Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Session III – Homologous Replacement/Gene Targeting

Extrachromosomal genes: a powerful tool in gene targeting approaches

Abstract

Several studies, some of which have been updated during the recent workshop entitled Genome Medicine: Gene Therapy for the Millennium (Rome, 30 September–3 October 2001), have highlighted the usefulness of extrachromosomal or episomal genes in gene targeting strategies. Due to the selectable nature of antibiotic resistance and reporter genes, targeted correction of mutated versions of these extrachromosomal genes allows an accurate quantification of correction frequency. In addition, these model systems facilitate and speed up the optimization of critical parameters for the successful application of gene targeting approaches. In fact, type of cell line, gene delivery system, molar ratio of episomal target/therapeutic constructs, nature and design of therapeutic complexes and different recombinative proteins may be critical for the actual feasibility of each method. Although virus-based approaches are now being investigated as well, this article is focusing on the targeted correction of extrachromosomal genes by the use of small DNA fragments (SDF), chimeric RNA/DNA oligonucleotides (RDO) and triplex-forming oligonucleotides (TFO).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yanez RJ, Porter AC . Therapeutic gene targeting Gene Therapy 1998 5: 149–159

    Article  CAS  PubMed  Google Scholar 

  2. Gruenert DC . Gene correction with small DNA fragments Curr Res Molec Ther 1998 1: 607–613

    CAS  Google Scholar 

  3. Kunzelmann K et al. Gene targeting of CFTR DNA in CF epithelial cells Gene Therapy 1996 3: 859–867

    CAS  PubMed  Google Scholar 

  4. Goncz KK, Kunzelmann K, Xu Z, Gruenert DC . Targeted replacement of normal and mutant CFTR sequences in human airway epithelial cells using DNA fragments Hum Mol Genet 1998 7: 1913–1919

    Article  CAS  PubMed  Google Scholar 

  5. Gruenert DC . Opportunities and challenges in targeting genes for therapy Gene Therapy 1999 6: 1347–1348

    Article  CAS  PubMed  Google Scholar 

  6. Goncz KK, Gruenert DC . Site-directed alteration of genomic DNA by small-fragment homologous replacement Meth Mol Biol 2000 133: 85–99

    CAS  Google Scholar 

  7. Goncz KK et al. Expression of DeltaF508 CFTR in normal mouse lung after site-specific modification of CFTR sequences by SFHR Gene Therapy 2001 8: 961–965

    Article  CAS  PubMed  Google Scholar 

  8. Kapsa R et al. In vivo and in vitro correction of the mdx dystrophin gene nonsense mutation by short-fragment homologous replacement Hum Gene Ther 2001 12: 629–642

    Article  CAS  PubMed  Google Scholar 

  9. Alexeev V, Yoon K . Stable and inheritable changes in genotype and phenotype of albino melanocytes induced by an RNA-DNA oligonucleotide Nature Biotech 1998 16: 1343–1346

    Article  CAS  Google Scholar 

  10. Kmiec EB . Targeted gene repair Gene Therapy 1999 6: 1–3

    Article  CAS  PubMed  Google Scholar 

  11. Bandyopadhyay P et al. Nucleotide exchange in genomic DNA of rat hepatocytes using RNA/DNA oligonucleotides. Targeted delivery of liposomes and polyethyleneimine to the asialoglycoprotein receptor J Biol Chem 1999 274: 10163–10172

    Article  CAS  PubMed  Google Scholar 

  12. Rando TA, Disatnik MH, Zhou LZ . Rescue of dystrophin expression in mdx mouse muscle by RNA/DNA oligonucleotides Proc Natl Acad Sci USA 2000 97: 5363–5368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bartlett RJ et al. In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide Nat Biotechnol 2000 18: 615–622

    Article  CAS  PubMed  Google Scholar 

  14. Tagalakis AD et al. Gene correction of the apolipoprotein (Apo) E2 phenotype to wild-type ApoE3 by in situ chimeraplasty J Biol Chem 2001 276: 13226–13230

    Article  CAS  PubMed  Google Scholar 

  15. Culver KW et al. Correction of chromosomal point mutations in human cells with bifunctional oligonucleotides Nat Biotechnol 1999 17: 989–993

    Article  CAS  PubMed  Google Scholar 

  16. Casey BP, Glazer PM . Gene targeting via triple-helix formation Prog Nucleic Acid Res Mol Biol 2001 67: 163–192

    Article  CAS  PubMed  Google Scholar 

  17. Knauert MP, Glazer PM . Triplex forming oligonucleotides: sequence-specific tools for gene targeting Hum Mol Genet 2001 10: 2243–2251

    Article  CAS  PubMed  Google Scholar 

  18. Vasquez KM, Dagle JM, Weeks DL, Glazer PM . Chromosome targeting at short polypurine sites by cationic triplex-forming oligonucleotides J Biol Chem 2001 276: 38536–38541

    Article  CAS  PubMed  Google Scholar 

  19. Vasquez KM, Dagle JM, Weeks DL, Glazer PM . Chromosome targeting at short polypurine sites by cationic triplex-forming oligonucleotides Colosimo A et al. Transfer and expression of foreign genes in mammalian cells. Biotechniques 2000; 29: 314–318, 320-322, 324 passim

    Article  Google Scholar 

  20. Igoucheva O, Alexeev V, Yoon K . Targeted gene correction by small single-stranded oligonucleotides in mammalian cells Gene Therapy 2001 8: 391–399

    Article  CAS  PubMed  Google Scholar 

  21. Strauss M . The site-specific correction of genetic defects Nature Med 1998 4: 274–275

    Article  CAS  PubMed  Google Scholar 

  22. Santana E et al. Different frequency of gene targeting events by the RNA-DNA oligonucleotide among epithelial cells J Invest Dermatol 1998 111: 1172–1177

    Article  CAS  PubMed  Google Scholar 

  23. Russell DW, Hirata RK . Human gene targeting by viral vectors Nat Genet 1998 18: 325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morrison C, Wagner E . Extrachromosomal recombination occurs efficiently in cells defective in various DNA repair systems Nucleic Acid Res 1996 24: 2053–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Colosimo A et al. Targeted correction of a defective selectable marker gene in human epithelial cells by small DNA fragments Mol Ther 2001 3: 178–185

    Article  CAS  PubMed  Google Scholar 

  26. Thorpe P, Stevenson B, Gohil A, Porteous D . Towards CFTR gene correction: a comparison of two key strategies Pediatric Pulmonol 2000 241

  27. Holmes AR et al. Intracellular compartmentalization of DNA fragments in cultured airway epithelial cells mediated by cationic lipids Pharm Res 1999 16: 1020–1025

    Article  CAS  PubMed  Google Scholar 

  28. Sangiuolo F et al. In vitro correction of CF epithelial cells using SFHR techniques Eur J Hum Genet 2001 1640

  29. Yoon K, Cole-Strauss A, Kmiec EB . Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA.DNA oligonucleotide Proc Natl Acad Sci USA 1996 93: 2071–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cole-Strauss A et al. Targeted gene repair directed by the chimeric RNA/DNA oligonucleotide in a mammalian cell-free extract Nucleic Acids Res 1999 27: 1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Beetham PR et al. A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations Proc Natl Acad Sci USA 1999 96: 8774–8778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Igoucheva O, Peritz AE, Levy D, Yoon K . A sequence-specific gene correction by an RNA-DNA oligonucleotide in mammalian cells characterized by transfection and nuclear extract using a lacZ shuttle system Gene Therapy 1999 6: 1960–1971

    Article  CAS  PubMed  Google Scholar 

  33. Liu L, Rice MC, Kmiec EB . In vivo gene repair of point and frameshift mutations directed by chimeric RNA/DNA oligonucleotides and modified single-stranded oligonucleotides Nucleic Acids Res 2001 29: 4238–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kren BT, Metz R, Kumar R, Steer CJ . Gene repair using chimeric RNA/DNA oligonucleotides Semin Liver Dis 1999 19: 93–104

    Article  CAS  PubMed  Google Scholar 

  35. Wang G, Levy DD, Seidman MM, Glazer PM . Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation Mol Cell Biol 1995 15: 1759–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chan PP et al. Targeted correction of an episomal gene in mammalian cells by a short DNA fragment tethered to a triplex-forming oligonucleotide J Biol Chem 1999 274: 11541–11548

    Article  CAS  PubMed  Google Scholar 

  37. Kren BT, Bandyopadhyay P, Steer CJ . In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotides Nat Med 1998 4: 285–290

    Article  CAS  PubMed  Google Scholar 

  38. Goncz K et al. Modification of a single base pair in the beta-globin locus in vitro by site-specific gene targeting Molec Ther 2001 3: 712

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colosimo, A., Guida, V., Palka, G. et al. Extrachromosomal genes: a powerful tool in gene targeting approaches. Gene Ther 9, 679–682 (2002). https://doi.org/10.1038/sj.gt.3301749

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301749

Keywords

Search

Quick links