Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Variations of human killer cell lectin-like receptors: common occurrence of NKG2-C deletion in the general population

Abstract

CD94 and NKG2 are members of the NK cell receptor families, and are encoded in the natural killer gene complex (NKC) on human chromosome 12p12–13, one of the candidate chromosomal regions for rheumatic diseases. To examine a possible association between variations in CD94 and NKG2 genes and genetic susceptibility to rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), we carried out a systematic polymorphism screening of NKG2-A (KLRC1), NKG2-C (KLRC2) and CD94 (KLRD1) genes on a population basis. In NKG2-A, previously considered to be highly conserved, 10 polymorphisms in the noncoding region and introns, as well as one rare variation leading to an amino acid substitution within the transmembrane region, c.238T>A (Cys80Ser), were detected. In NKG2-C, in addition to the previously described two nonsynonymous substitutions, c.5G>A (Ser2Asn) and c.305C>T (Ser102Phe), two polymorphisms were newly detected in the noncoding region. In CD94, only one single nucleotide substitution was identified in the 5′ untranslated region. When the patients and healthy individuals were genotyped for these variations, no significant association was observed. However, although statistically not significant, NKG2-A c.238T>A (Cys80Ser) was observed in three patients with RA, but in none of the healthy individuals and the patients with SLE. Unexpectedly, in the process of polymorphism screening, we identified homozygous deletion of NKG2-C in approximately 4.3% of healthy donors; under the assumption of Hardy–Weinberg equilibrium, the allele frequency of NKG2-C deletion was estimated to be 20.7%. These results demonstrated that, although human NKG2-A, -C and CD94 are generally conserved with respect to amino acid sequences, NKG2-A is polymorphic in the noncoding region, and that the number of genes encoded in the human NKC is variable among individuals, as previously shown for the leukocyte receptor complex (LRC), HLA and Fcγ receptor (FCGR) regions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Trinchieri G . Biology of natural killer cells. Adv Immunol 1989; 47: 187–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP . Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999; 17: 189–220.

    Article  CAS  PubMed  Google Scholar 

  3. Lanier LL . NK cell receptors. Annu Rev Immunol 1998; 16: 359–393.

    Article  CAS  PubMed  Google Scholar 

  4. Raulet DH, Vance RE, McMahon CW . Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 2001; 19: 291–330.

    Article  CAS  PubMed  Google Scholar 

  5. Seaman WE . Natural killer cells and natural killer T cells. Arthritis Rheum 2000; 43: 1204–1217.

    Article  CAS  PubMed  Google Scholar 

  6. Chang C, Rodriguez A, Carretero M, Lopez-Botet M, Phillips JH, Lanier LL . Molecular characterization of human CD94: a type II membrane glycoprotein related to the C-type lectin superfamily. Eur J Immunol 1995; 25: 2433–2437.

    Article  CAS  PubMed  Google Scholar 

  7. Yabe T, McSherry C, Bach FH et al. A multigene family on human chromosome 12 encodes natural killer-cell lectins. Immunogenetics 1993; 37: 455–460.

    Article  CAS  PubMed  Google Scholar 

  8. Lazetic S, Chang C, Houchins P, Lanier LL, Phillips JH . Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J Immunol 1996; 157: 4741–4745.

    CAS  PubMed  Google Scholar 

  9. Carretero M, Cantoni C, Bellon T et al. The CD94 and NKG2-A C-type lectins covalently assemble to form a natural killer cell inhibitory receptor for HLA class I molecules. Eur J Immunol 1997; 27: 563–567.

    Article  CAS  PubMed  Google Scholar 

  10. Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG . Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J Exp Med 1998; 187: 813–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee N, Llano M, Carretero M et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci USA 1998; 95: 5199–5204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Braud VM, Allan DS, O'Callaghan CA et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 1998; 391: 795–799.

    Article  CAS  PubMed  Google Scholar 

  13. Houchins JP, Lanier LL, Niemi EC, Phillips JH, Ryan JC . Natural killer cell cytolytic activity is inhibited by NKG2-A and activated by NKG2-C. J Immunol 1997; 158: 3603–3609.

    CAS  PubMed  Google Scholar 

  14. Plougastel B, Jones T, Trowsdale J . Genomic structure, chromosome location, and alternative splicing of the human NKG2A gene. Immunogenetics 1996; 44: 286–291.

    Article  CAS  PubMed  Google Scholar 

  15. Suto Y, Yabe T, Maenaka K, Tokunaga K, Tadokoro K, Juji T . The human natural killer gene complex (NKC) is located on chromosome 12p13.1–p13.2. Immunogenetics 1997; 46: 159–162.

    Article  CAS  PubMed  Google Scholar 

  16. Renedo M, Arce I, Rodriguez A et al. The human natural killer gene complex is located on chromosome 12p12–p13. Immunogenetics 1997; 46: 307–311.

    Article  CAS  PubMed  Google Scholar 

  17. Cornélis F, Faure S, Martinez M et al. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc Natl Acad Sci USA 1998; 95: 10 746–10 750.

    Article  Google Scholar 

  18. Moser KL, Neas BR, Salmon JE et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees. Proc Natl Acad Sci USA 1998; 95: 14 869–14 874.

    Article  Google Scholar 

  19. Plougastel B, Trowsdale J . Sequence analysis of a 62-kb region overlapping the human KLRC cluster of genes. Genomics 1998; 49: 193–199.

    Article  CAS  PubMed  Google Scholar 

  20. Renedo M, Arce I, Montgomery K et al. A sequence-ready physical map of the region containing the human natural killer gene complex on chromosome 12p12.3–p13.2. Genomics 2000; 65: 129–136.

    Article  CAS  PubMed  Google Scholar 

  21. Glienke J, Sobanov Y, Brostjan C et al. The genomic organization of NKG2C, E, F, and D receptor genes in the human natural killer gene complex. Immunogenetics 1998; 48: 163–173.

    Article  CAS  PubMed  Google Scholar 

  22. Brostjan C, Sobanov Y, Glienke J et al. The NKG2 natural killer cell receptor family: comparative analysis of promoter sequences. Genes Immun 2000; 1: 504–508.

    Article  CAS  PubMed  Google Scholar 

  23. Uhrberg M, Valiante NM, Shum BP et al. Human diversity in killer cell inhibitory receptor genes. Immunity 1997; 7: 753–763.

    Article  CAS  PubMed  Google Scholar 

  24. Trowsdale J . Genetic and functional relationships between MHC and NK receptor genes. Immunity 2001; 15: 363–374.

    Article  CAS  PubMed  Google Scholar 

  25. Shum BP, Flodin LR, Muir DG et al. Conservation and variation in human and common chimpanzee CD94 and NKG2 genes. J Immunol 2002; 168: 240–252.

    Article  CAS  PubMed  Google Scholar 

  26. Dunnen JT, Antonarakis SE . Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 2000; 15: 7–12.

    Article  Google Scholar 

  27. Sobanov Y, Glienke J, Brostjan C, Lehrach H, Francis F, Hofer E . Linkage of the NKG2 and CD94 receptor genes to D12S77 in the human natural killer gene complex. Immuogenetics 1999; 49: 99–105.

    Article  CAS  Google Scholar 

  28. LaBonte ML, Hershberger KL, Korber B, Letvin NL . The KIR and CD94/NKG2 families of molecules in the rhesus monkey. Immunol Rev 2001; 183: 25–40.

    Article  CAS  PubMed  Google Scholar 

  29. Takei F, McQueen KL, Maeda M et al. Ly49 and CD94/NKG2: developmentally regulated expression and evolution. Immunol Rev 2001; 181: 90–103.

    Article  CAS  PubMed  Google Scholar 

  30. Vance RE, Jamieson AM, Cado D, Raulet DH . Implications of CD94 deficiency and monoallelic NKG2A expression for natural killer cell development and repertoire formation. Proc Natl Acad Sci USA 2002; 99: 868–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bohme J, Andersson M, Andersson G, Moller E, Peterson PA, Rask L . HLA-DR beta genes vary in number between different DR specificities, whereas the number of DQ beta genes is constant. J Immunol 1985; 135: 2149–2155.

    CAS  PubMed  Google Scholar 

  32. Tokunaga K, Saueracker G, Kay PH, Christiansen FT, Anand R, Dawkins RL . Extensive deletions and insertions in different MHC supratypes detected by pulsed field gel electrophoresis. J Exp Med 1988; 168: 933–940.

    Article  CAS  PubMed  Google Scholar 

  33. Wagtmann N, Rojo S, Eichler E, Mohrenweiser H, Long EO . A new human gene complex encoding the killer cell inhibitory receptors and related monocyte/macrophage receptors. Curr Biol 1997; 7: 615–618.

    Article  CAS  PubMed  Google Scholar 

  34. Wende H, Colonna M, Ziegler A, Volz A . Organization of the leukocyte receptor cluster (LRC) on human chromosome 19q13.4. Mamm Genome 1999; 10: 154–160.

    Article  CAS  PubMed  Google Scholar 

  35. de Haas M, Kleijer M, van Zwieten R, Roos D, von dem Borne AE . Neutrophil Fcg RIIIb deficiency, nature, and clinical consequences: a study of 21 individuals from 14 families. Blood 199; 86: 2403–2413.

    Google Scholar 

  36. Valiante NM, Uhrberg M, Shilling HG et al. Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 1997; 7: 739–751.

    Article  CAS  PubMed  Google Scholar 

  37. Smith HR, Chuang HH, Wang LL, Salcedo M, Heusel JW, Yokoyama WM . Nonstochastic coexpression of activation receptors on murine natural killer cells. J Exp Med 2000; 191: 1341–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tomasec P, Braud VM, Rickards C et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 2000; 287: 1031.

    Article  CAS  PubMed  Google Scholar 

  39. Daniels KA, Devora G, Lai WC, O'Donnell CL, Bennett M, Welsh RM . Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J Exp Med 2001; 194: 29–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee SH, Girard S, Macina D et al. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 2001; 28: 42–45.

    CAS  PubMed  Google Scholar 

  41. Brown MG, Dokun AO, Heusel JW et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 2001; 292: 934–937.

    Article  CAS  PubMed  Google Scholar 

  42. Delano ML, Brownstein DG . Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype. J Virol 1995; 69: 5875–5877.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Arnett FC, Edworthy SM, Bloch DA et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

    Article  CAS  PubMed  Google Scholar 

  44. Tan EM, Cohen AS, Fries JF et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25: 1271–1277.

    Article  CAS  PubMed  Google Scholar 

  45. Tokunaga K, Imanishi T, Takahashi K, Juji T . On the origin and dispersal of East Asian populations as viewed from HLA haplotypes. In: Szathmary EJ (ed). Prehistoric Mongoloid Dispersals. Oxford University Press: Oxford, 1996, pp 187–197.

    Google Scholar 

  46. Hikami K, Tsuchiya N, Tokunaga K . New variations in human OX40 ligand (CD134L) gene. Genes Immun 2000; 1: 521–522.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr Hirohiko Hohjoh (Department of Human Genetics, The University of Tokyo) for valuable suggestions, and to Tomoko Suzuki for help in the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Tsuchiya.

Additional information

This study was supported by Grants-in-Aid for Scientific Research (B), and a Grant-in-Aid for Scientific Research on Priority Areas (C) ‘Medical Genome Science’ from the Ministry of Education, Science, Sports and Culture of Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hikami, K., Tsuchiya, N., Yabe, T. et al. Variations of human killer cell lectin-like receptors: common occurrence of NKG2-C deletion in the general population. Genes Immun 4, 160–167 (2003). https://doi.org/10.1038/sj.gene.6363940

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363940

Keywords

This article is cited by

Search

Quick links