Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of the metal-bound N–H functionality in Noyori-type molecular catalysts

Abstract

Noyori-type catalysts have found numerous applications in research and industrial settings. The central mechanistic component of such catalysts is a metal centre coordinated to a N–H moiety. This amino moiety has traditionally been thought to participate directly in catalytic reactions by serving as a H+ donor, with the resulting amido group then serving as a H+ acceptor. This traditional understanding has been supplanted by more recent studies that instead suggest that the N–H group(s) (or N–Ma group(s) obtained in the reaction with a base of an alkali metal Ma) serve to stabilize rate-determining transition states through non-covalent N–X···O interactions (X = H or Ma). Thus, N–X bonds are actually not cleaved or formed in many catalytic cycles. This Review describes examples of metal–ligand bifunctional catalysts relevant to reactions involving H2 or its equivalents, emphasizing systems that have been applied in industry. Subsequently, a summary of our present understanding of the Noyori–Ikariya and Noyori reaction mechanisms is presented, which we compare to topical related reactions such as MeOH dehydrogenation, ester and carboxamide hydrogenation and the dehydrogenative coupling of primary alcohols with other alcohols and amines. This mechanistic understanding allows us to identify the design principles that may potentially afford improved molecular catalysts and that may unravel a distinct mechanism for H2 production by the diiron hydrogenase enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three variations of Noyori (pre)catalysts mediate the asymmetric hydrogenation of functionalized ketones.
Fig. 2: Metal–ligand bifunctional (pre)catalysts featuring N–H groups are active for reactions involving H2 or its equivalents.
Fig. 3: Noyori–Ikariya and Noyori catalysts are used in a variety of industrial reactions.
Fig. 4: The mechanism of the Noyori–Ikariya asymmetric transfer hydrogenation reaction.
Fig. 5: The mechanism of the Noyori asymmetric hydrogenation reaction.
Fig. 6: Non-covalent interactions at play in catalytic transition states present under base-free and excess-base conditions5,107,108.
Fig. 7: Reversible hydrogenation of esters mediated by Noyori-type M/N–H catalysts.
Fig. 8: The structure and proposed mechanism of [FeFe]-hydrogenase.

Similar content being viewed by others

References

  1. Temkin, O. N. Homogeneous Catalysis with Metal Complexes: Kinetic Aspects and Mechanisms. (Wiley-VCH, Weinheim, 2012).

    Book  Google Scholar 

  2. Gridnev, I. D. & Dub, P. A. Enantioselection in Asymmetric Catalysis. (CRC Press, Boca Raton, 2016).

  3. Gridnev, I. D. & Imamoto, T. Enantioselection mechanism in Rh-catalyzed asymmetric hydrogenation. Russ. Chem. Bull. 65, 1514–1534 (2016).

    Article  CAS  Google Scholar 

  4. Gridnev, I. D. & Imamoto, T. Mechanism of enantioselection in Rh-catalyzed asymmetric hydrogenation. The origin of utmost catalytic performance. Chem. Commun. 7447–7464 (2009).

  5. Dub, P. A. & Gordon, J. C. The mechanism of enantioselective ketone reduction with Noyori and Noyori–Ikariya bifunctional catalysts. Dalton Trans. 45, 6756–6781 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Ohkuma, T. et al. Asymmetric hydrogenation of alkenyl, cyclopropyl, and aryl ketones. RuCl2(xylbinap)(1,2-diamine) as a precatalyst exhibiting a wide scope. J. Am. Chem. Soc. 120, 13529–13530 (1998).

    Article  CAS  Google Scholar 

  7. Ohkuma, T. et al. Asymmetric hydrogenation of tert-alkyl ketones. J. Am. Chem. Soc. 127, 8288–8289 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Matsumura, K. et al. Chiral ruthenabicyclic complexes: precatalysts for rapid, enantioselective, and wide-scope hydrogenation of ketones. J. Am. Chem. Soc. 133, 10696–10699 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Kozuch, S. & Martin, J. M. L. “Turning over” definitions in catalytic cycles. ACS Catal. 2, 2787–2794 (2012).

    Article  CAS  Google Scholar 

  10. Ohkuma, T., Ooka, H., Hashiguchi, S., Ikariya, T. & Noyori, R. Practical enantioselective hydrogenation of aromatic ketones. J. Am. Chem. Soc. 117, 2675–2676 (1995).

    Article  CAS  Google Scholar 

  11. Hashiguchi, S., Fujii, A., Takehara, J., Ikariya, T. & Noyori, R. Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium(ii) complexes. J. Am. Chem. Soc. 117, 7562–7563 (1995).

    Article  CAS  Google Scholar 

  12. Fujii, A., Hashiguchi, S., Uematsu, N., Ikariya, T. & Noyori, R. Ruthenium(ii)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid–triethylamine mixture. J. Am. Chem. Soc. 118, 2521–2522 (1996).

    Article  CAS  Google Scholar 

  13. Uematsu, N., Fujii, A., Hashiguchi, S., Ikariya, T. & Noyori, R. Asymmetric transfer hydrogenation of imines. J. Am. Chem. Soc. 118, 4916–4917 (1996).

    Article  CAS  Google Scholar 

  14. Murata, Y. & Torihara, M. WO2014203963A1 (2014).

  15. Kuriyama, W. et al. Catalytic hydrogenation of esters. Development of an efficient catalyst and processes for synthesising (R)-1,2-propanediol and 2-(L-menthoxy)ethanol. Org. Process Res. Dev. 16, 166–171 (2012).

    Article  CAS  Google Scholar 

  16. Touge, T. et al. Oxo-tethered ruthenium(ii) complex as a bifunctional catalyst for asymmetric transfer hydrogenation and H2 hydrogenation. J. Am. Chem. Soc. 133, 14960–14963 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Saudan, L. A., Saudan, C. M., Debieux, C. & Wyss, P. Dihydrogen reduction of carboxylic esters to alcohols under the catalysis of homogeneous ruthenium complexes: high efficiency and unprecedented chemoselectivity. Angew. Chem. Int. Ed. 46, 7473–7476 (2007).

    Article  CAS  Google Scholar 

  18. Abdur-Rashid, K. WO2004096735A2 (2004).

  19. Elangovan, S. et al. Selective catalytic hydrogenations of nitriles, ketones, and aldehydes by well-defined manganese pincer complexes. J. Am. Chem. Soc. 138, 8809–8814 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, W. et al. Iridium catalysts with f-amphox ligands: asymmetric hydrogenation of simple ketones. Org. Lett. 18, 2938–2941 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Bigler, R. & Mezzetti, A. Highly enantioselective transfer hydrogenation of polar double bonds by macrocyclic iron(ii)/(NH)2P2 catalysts. Org. Process Res. Dev. 20, 253–261 (2016).

    Article  CAS  Google Scholar 

  22. Zuo, W. & Morris, R. H. Synthesis and use of an asymmetric transfer hydrogenation catalyst based on iron(ii) for the synthesis of enantioenriched alcohols and amines. Nat. Protoc. 10, 241–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Tan, X. et al. Highly efficient tetradentate ruthenium catalyst for ester reduction: especially for hydrogenation of fatty acid esters. Org. Lett. 17, 454–457 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Mukherjee, A., Srimani, D., Chakraborty, S., Ben-David, Y. & Milstein, D. Selective hydrogenation of nitriles to primary amines catalyzed by a cobalt pincer complex. J. Am. Chem. Soc. 137, 8888–8891 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Filonenko, G. A. et al. Bis-N-heterocyclic carbene aminopincer ligands enable high activity in Ru-catalyzed ester hydrogenation. J. Am. Chem. Soc. 137, 7620–7623 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Spasyuk, D., Vicent, C. & Gusev, D. G. Chemoselective hydrogenation of carbonyl compounds and acceptorless dehydrogenative coupling of alcohols. J. Am. Chem. Soc. 137, 3743–3746 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Spasyuk, D., Smith, S. & Gusev, D. G. Replacing phosphorus with sulfur for the efficient hydrogenation of esters. Angew. Chem. Int. Ed. 52, 2538–2542 (2013).

    Article  CAS  Google Scholar 

  28. Zuo, W., Lough, A. J., Li, Y. F. & Morris, R. H. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines. Science 342, 1080–1083 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Xie, J.-H., Liu, X.-Y., Xie, J.-B., Wang, L.-X. & Zhou, Q.-L. An additional coordination group leads to extremely efficient chiral iridium catalysts for asymmetric hydrogenation of ketones. Angew. Chem. Int. Ed. 50, 7329–7332 (2011).

    Article  CAS  Google Scholar 

  30. Zweifel, T., Naubron, J.-V., Büttner, T., Ott, T. & Grützmacher, H. Ethanol as hydrogen donor: highly efficient transfer hydrogenations with rhodium(i) amides. Angew. Chem. Int. Ed. 47, 3245–3249 (2008).

    Article  CAS  Google Scholar 

  31. Dub, P. A., Scott, B. L. & Gordon, J. C. Air-stable NNS (ENENES) ligands and their well-defined ruthenium and iridium complexes for molecular catalysis. Organometallics 34, 4464–4479 (2015).

    Article  CAS  Google Scholar 

  32. Dub, P. A. & Gordon, J. C. WO2015191505A1 (2015).

  33. Liu, T. et al. Iron complexes bearing diphosphine ligands with positioned pendant amines as electrocatalysts for the oxidation of H2. Organometallics 34, 2747–2764 (2015).

    Article  CAS  Google Scholar 

  34. Hulley, E. B., Helm, M. L. & Bullock, R. M. Heterolytic cleavage of H2 by bifunctional manganese(i) complexes: impact of ligand dynamics, electrophilicity, and base positioning. Chem. Sci. 5, 4729–4741 (2014).

    Article  CAS  Google Scholar 

  35. Yang, J. Y. et al. Two pathways for electrocatalytic oxidation of hydrogen by a nickel bis(diphosphine) complex with pendant amines in the second coordination sphere. J. Am. Chem. Soc. 135, 9700–9712 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, G., Scott, B. L. & Hanson, S. K. Mild and homogeneous cobalt-catalyzed hydrogenation of C=C, C=O, and C=N bonds. Angew. Chem. Int. Ed. 51, 12102–12106 (2012).

    Article  CAS  Google Scholar 

  37. Kuriyama, W., Matsumoto, T., Ino, Y. & Ogata, O. WO2011048727A1 (2011).

  38. Bertoli, M. et al. Osmium and ruthenium catalysts for dehydrogenation of alcohols. Organometallics 30, 3479–3482 (2011).

    Article  CAS  Google Scholar 

  39. Geisser, R. W., Oetiker, J. D. & Schroeder, F. WO2015110515A1 (2015).

  40. Nakayama, Y. & Ogata, O. WO2016031874A1 (2016).

  41. Zell, T. & Langer, R. From ruthenium to iron and manganese — a mechanistic view on challenges and design principles of base-metal hydrogenation catalysts. ChemCatChem 10, 1930–1940 (2018).

    Article  CAS  Google Scholar 

  42. Filonenko, G. A., van Putten, R., Hensen, E. J. M. & Pidko, E. A. Catalytic (de)hydrogenation promoted by non-precious metals — Co, Fe and Mn: recent advances in an emerging field. Chem. Soc. Rev. 47, 1459–1483 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Morris, R. H. Iron group hydrides in Noyori bifunctional catalysis. Chem. Rec. 16, 2644–2658 (2016).

    Article  CAS  Google Scholar 

  44. Bullock, R. M. & Helm, M. L. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays. Acc. Chem. Res. 48, 2017–2026 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Jing, Y., Chakraborty, S., Brennessel, W. W. & Jones, W. D. Additive-free cobalt-catalyzed hydrogenation of esters to alcohols. ACS Catal. 7, 3735–3740 (2017).

    Article  CAS  Google Scholar 

  46. Bullock, R. M. Abundant metals give precious hydrogenation performance. Science 342, 1054–1055 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Hübner, S., de Vries, J. G. & Farina, V. Why does industry not use immobilized transition metal complexes as catalysts? Adv. Synth. Catal. 358, 3–25 (2016).

    Article  CAS  Google Scholar 

  48. He, J. & Kappler, A. Recovery of precious metals from waste streams. Microb. Biotechnol. 10, 1194–1198 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Canda, L., Heput, T. & Ardelean, E. Methods for recovering precious metals from industrial waste. IOP Conf. Ser. Mater. Sci. Eng. 106, 012020 (2016).

    Article  Google Scholar 

  50. Friedfeld, M. R., Zhong, H., Ruck, R. T., Shevlin, M. & Chirik, P. J. Cobalt-catalyzed asymmetric hydrogenation of enamides enabled by single-electron reduction. Science 360, 888–893 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Bullock, R. M. Reaction: earth-abundant metal catalysts for energy conversions. Chem 2, 444–446 (2017).

    Article  CAS  Google Scholar 

  52. Korstanje, T. J., van der Vlugt, J. I., Elsevier, C. J. & de Bruin, B. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst. Science 350, 298–302 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Friedfeld, M. R. et al. Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts. Science 342, 1076–1080 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Jagadeesh, R. V. et al. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 342, 1073–1076 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Ford, E. S. et al. COPD Surveillance—United States, 1999–2011. Chest 144, 284–305 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hughes, A. D. et al. Discovery of muscarinic acetylcholine receptor antagonist and beta 2 adrenoceptor agonist (MABA) dual pharmacology molecules. Bioorg. Med. Chem. Lett. 21, 1354–1358 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Osborne, R. et al. Efficient conversion of a nonselective norepinephrin reuptake inhibitor into a dual muscarinic antagonist−β2-agonist for the treatment of chronic obstructive pulmonary disease. J. Med. Chem. 54, 6998–7002 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Mammen, M. et al. US20040167167A1 (2004).

  59. Komiyama, M., Itoh, T. & Takeyasu, T. Scalable ruthenium-catalyzed asymmetric synthesis of a key intermediate for the β2-Adrenergic receptor agonist. Org. Process Res. Dev. 19, 315–319 (2015).

    Article  CAS  Google Scholar 

  60. Chung, J. Y. L. et al. Evolution of a manufacturing route to omarigliptin, a long-acting DPP-4 inhibitor for the treatment of type 2 diabetes. Org. Process Res. Dev. 19, 1760–1768 (2015).

    Article  CAS  Google Scholar 

  61. Taylor, K. Drug in focus: levofloxacin. GenericsWeb https://web.archive.org/web/20140112065215/http://www.genericsweb.com/druginfocus/Levofloxacin (2010).

  62. Hayakawa, I., Atarashi, S., Kimura, Y. & Kawakami, K. EP488227A2 (1992).

  63. Johnson & Johnson. Investor relations business overview Q2 2010. investor.jnj http://files.shareholder.com/downloads/JNJ/6384228338x0x388829/8EC2A3A2-6953-45E2-AD82-656235F4D466/IR%20General%202Q10.pdf (2010).

  64. Fujiwara, T. & Ebata, T. EP322815A2 (1989).

  65. Brown Ripin, D. H. et al. Process improvements for the manufacture of tenofovir disoproxil fumarate at commercial scale. Org. Process Res. Dev. 14, 1194–1201 (2010).

    Article  CAS  Google Scholar 

  66. Yoshikawa, N., Xu, F., Arredondo, J. D. & Itoh, T. A. Large-scale synthesis of potent glucokinase activator MK-0941 via selective O-arylation and O-alkylation. Org. Process Res. Dev. 15, 824–830 (2011).

    Article  CAS  Google Scholar 

  67. Sumi, K. & Kumobayashi, H. in Organometallics in Process Chemistry (ed. Larsen, R.) 63–95 (Springer, Berlin Heidelberg, 2004).

  68. Siebold, M. et al. Comparison of the production of lactic Acid by three different lactobacilli and its recovery by extraction and electrodialysis. Process Biochem. 30, 81–95 (1995).

    Article  CAS  Google Scholar 

  69. Wee, Y.-J., Kim, J.-N. & Ryu, H.-W. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 44, 163–172 (2006).

    CAS  Google Scholar 

  70. Ootsuka, T., Imamura, M., Ishii, A., Ueda, K. & Mimura, S. WO2014115801A1 (2014).

  71. Otsuka, T., Ishii, A., Dub, P. A. & Ikariya, T. Practical selective hydrogenation of α-fluorinated esters with bifunctional pincer-type ruthenium(ii) catalysts leading to fluorinated alcohols or fluoral hemiacetals. J. Am. Chem. Soc. 135, 9600–9603 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Ishii, A., Ootsuka, T., Imamura, M., Nishimiya, T. & Kimura, K. WO2013018573A1 (2013).

  73. Ishii, A., Ootsuka, T., Ishimaru, T. & Imamura, M. WO2012105431A1 (2012).

  74. Dub, P. A., Scott, B. L. & Gordon, J. C. Why does alkylation of the N–H functionality within M/NH bifunctional Noyori-type catalysts lead to turnover? J. Am. Chem. Soc. 139, 1245–1260 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Li, H. et al. Rhenium and manganese complexes bearing amino-bis(phosphinite) ligands: synthesis, characterization, and catalytic activity in hydrogenation of ketones. Organometallics 37, 1271–1279 (2018).

    Article  CAS  Google Scholar 

  76. Fu, S., Shao, Z., Wang, Y. & Liu, Q. Manganese-catalyzed upgrading of ethanol into 1-butanol. J. Am. Chem. Soc. 139, 11941–11948 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Kulkarni, N. V., Brennessel, W. W. & Jones, W. D. Catalytic upgrading of ethanol to n-butanol via manganese-mediated Guerbet reaction. ACS Catal. 8, 997–1002 (2018).

    Article  CAS  Google Scholar 

  78. Fryzuk, M. D., MacNeil, P. A. & Rettig, S. J. Ancillary ligand involvement in the activation of dihydrogen by iridium(iii) complexes. Organometallics 4, 1145–1147 (1985).

    Article  CAS  Google Scholar 

  79. Fryzuk, M. D., Montgomery, C. D. & Rettig, S. J. Synthesis and reactivity of ruthenium amide–phosphine complexes. Facile conversion of a ruthenium amide to a ruthenium amine via dihydrogen activation and orthometalation. X-Ray structure of RuCl(C6H4PPh2)[NH(SiMe2CH2PPh2)2]. Organometallics 10, 467–473 (1991).

    Article  CAS  Google Scholar 

  80. Blum, Y., Czarkie, D., Rahamim, Y. & Shvo, Y. (Cyclopentadienone)ruthenium carbonyl complexes — a new class of homogeneous hydrogenation catalysts. Organometallics 4, 1459–1461 (1985).

    Article  CAS  Google Scholar 

  81. Shvo, Y., Abed, M., Blum, Y. & Laine, R. M. Homogeneous catalytic cleavage of saturated carbon–nitrogen bonds. Isr. J. Chem. 27, 267–275 (1986).

    Article  CAS  Google Scholar 

  82. Shvo, Y., Czarkie, D., Rahamim, Y. & Chodosh, D. F. A new group of ruthenium complexes: structure and catalysis. J. Am. Chem. Soc. 108, 7400–7402 (1986).

    Article  CAS  Google Scholar 

  83. Noyori, R., Yamakawa, M. & Hashiguchi, S. Metal−ligand bifunctional catalysis: a nonclassical mechanism for asymmetric hydrogen transfer between alcohols and carbonyl compounds. J. Org. Chem. 66, 7931–7944 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Yamakawa, M., Yamada, I. & Noyori, R. CH/π attraction: the origin of enantioselectivity in transfer hydrogenation of aromatic carbonyl compounds catalyzed by chiral η6-arene-ruthenium(ii) complexes. Angew. Chem. Int. Ed. 40, 2818–2821 (2001).

    Article  CAS  Google Scholar 

  85. Sandoval, C. A., Ohkuma, T., Muñiz, K. & Noyori, R. Mechanism of asymmetric hydrogenation of ketones catalyzed by BINAP/1,2-diamine–ruthenium(ii) complexes. J. Am. Chem. Soc. 125, 13490–13503 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Dub, P. A. & Ikariya, T. Quantum chemical calculations with the inclusion of nonspecific and specific solvation: asymmetric transfer hydrogenation with bifunctional ruthenium catalysts. J. Am. Chem. Soc. 135, 2604–2619 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Handgraaf, J.-W. & Meijer, E. J. Realistic modeling of ruthenium-catalyzed transfer hydrogenation. J. Am. Chem. Soc. 129, 3099–3103 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Pavlova, A. & Meijer, E. J. Understanding the role of water in aqueous ruthenium-catalyzed transfer hydrogenation of ketones. ChemPhysChem 13, 3492–3496 (2012).

    Article  PubMed  CAS  Google Scholar 

  89. Ohkuma, T. et al. trans-RuH(η1-BH4)(binap)(1,2-diamine): a catalyst for asymmetric hydrogenation of simple ketones under base-free conditions. J. Am. Chem. Soc. 124, 6508–6509 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Chen, C.-y. et al. Catalytic, enantioselective synthesis of taranabant, a novel, acyclic cannabinoid-1 receptor inverse agonist for the treatment of obesity. Org. Process Res. Dev. 11, 616–623 (2007).

    Article  CAS  Google Scholar 

  91. Sandoval, C. A., Yamaguchi, Y., Ohkuma, T., Kato, K. & Noyori, R. Solution structures and behavior of trans-RuH(η1-BH4)(binap)(1,2-diamine) complexes. Magn. Reson. Chem. 44, 66–75 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Sandoval, C. A. et al. Mechanism of asymmetric hydrogenation of acetophenone catalyzed by chiral η6-arene–N-tosylethylenediamine–ruthenium(ii) complexes. Chem. Asian J. 1, 102–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Trincado, M. & Grützmacher, H. in Cooperative Catalysis (ed. Peters, R.) 67–110 (Wiley-VCH, Weinheim, 2015).

  94. Grützmacher, H. Cooperating ligands in catalysis. Angew. Chem. Int. Ed. 47, 1814–1818 (2008).

    Article  CAS  Google Scholar 

  95. Li, H. & Hall, M. B. Computational mechanistic studies on reactions of transition metal complexes with noninnocent pincer ligands: aromatization–dearomatization or not. ACS Catal. 5, 1895–1913 (2015).

    Article  CAS  Google Scholar 

  96. Morris, R. H. Exploiting metal–ligand bifunctional reactions in the design of iron asymmetric hydrogenation catalysts. Acc. Chem. Res. 48, 1494–1502 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Hartmann, R. & Chen, P. Noyori’s hydrogenation catalyst needs a Lewis acid cocatalyst for high activity. Angew. Chem. Int. Ed. 40, 3581–3585 (2001).

    Article  CAS  Google Scholar 

  98. Hartmann, R. & Chen, P. Numerical modeling of differential kinetics in the asymmetric hydrogenation of acetophenone by Nyori’s catalyst. Adv. Synth. Catal. 345, 1353–1359 (2003).

    Article  CAS  Google Scholar 

  99. John, J. M., Takebayashi, S., Dabral, N., Miskolzie, M. & Bergens, S. H. Base-catalyzed bifunctional addition to amides and imides at low temperature. A new pathway for carbonyl hydrogenation. J. Am. Chem. Soc. 135, 8578–8584 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Dub, P. A., Henson, N. J., Martin, R. L. & Gordon, J. C. Unravelling the mechanism of the asymmetric hydrogenation of acetophenone by [RuX2(diphosphine)(1,2-diamine)] catalysts. J. Am. Chem. Soc. 136, 3505–3521 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Takebayashi, S., Dabral, N., Miskolzie, M. & Bergens, S. H. Experimental investigations of a partial Ru–O bond during the metal–ligand bifunctional addition in Noyori-type enantioselective ketone hydrogenation. J. Am. Chem. Soc. 133, 9666–9669 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Hamilton, R. J. & Bergens, S. H. Direct observations of the metal–ligand bifunctional addition step in an enantioselective ketone hydrogenation. J. Am. Chem. Soc. 130, 11979–11987 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Hamilton, R. J. & Bergens, S. H. An unexpected possible role of base in asymmetric catalytic hydrogenations of ketones. Synthesis and characterization of several key catalytic intermediates. J. Am. Chem. Soc. 128, 13700–13701 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Hamilton, R. J., Leong, C. G., Bigam, G., Miskolzie, M. & Bergens, S. H. A ruthenium−dihydrogen putative intermediate in ketone hydrogenation. J. Am. Chem. Soc. 127, 4152–4153 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Hasanayn, F. & Morris, R. H. Symmetry aspects of H2 splitting by five-coordinate d6 ruthenium amides, and calculations on acetophenone hydrogenation, ruthenium alkoxide formation, and subsequent hydrogenolysis in a model trans-Ru(H)2(diamine)(diphosphine) system. Inorg. Chem. 51, 10808–10818 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Dub, P. A. & Gordon, J. C. Metal–ligand bifunctional catalysis: the “accepted” mechanism, the issue of concertedness, and the function of the ligand in catalytic cycles Involving hydrogen atoms. ACS Catal. 7, 6635–6655 (2017).

    Article  CAS  Google Scholar 

  107. Belkova, N. V., Epstein, L. M., Filippov, O. A. & Shubina, E. S. Hydrogen and dihydrogen bonds in the reactions of metal hydrides. Chem. Rev. 116, 8545–8587 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Karpfen, A. in Advances in Chemical Physics 469–510 (Wiley-VCH, Weinheim, 2003).

    Chapter  Google Scholar 

  109. Armaroli, N. & Balzani, V. The hydrogen issue. ChemSusChem 4, 21–36 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Preuster, P., Papp, C. & Wasserscheid, P. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc. Chem. Res. 50, 74–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Trincado, M., Banerjee, D. & Grützmacher, H. Molecular catalysts for hydrogen production from alcohols. Energy Environ. Sci. 7, 2464–2503 (2014).

    Article  CAS  Google Scholar 

  112. Goeppert, A., Czaun, M., Jones, J.-P., Surya Prakash, G. K. & Olah, G. A. Recycling of carbon dioxide to methanol and derived products — closing the loop. Chem. Soc. Rev. 43, 7995–8048 (2014).

    Article  CAS  Google Scholar 

  113. Nielsen, M. et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495, 85–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Rodríguez-Lugo, R. E. et al. A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures. Nat. Chem. 5, 342–347 (2013).

    Article  PubMed  CAS  Google Scholar 

  115. Kothandaraman, J., Goeppert, A., Czaun, M., Olah, G. A. & Surya Prakash, G. K. Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst. J. Am. Chem. Soc. 138, 778–781 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Alberico, E. et al. Unravelling the mechanism of basic aqueous methanol dehydrogenation catalyzed by Ru–PNP pincer complexes. J. Am. Chem. Soc. 138, 14890–14904 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Sinha, V., Govindarajan, N., de Bruin, B. & Meijer, E. J. How solvent affects C–H activation and hydrogen production pathways in homogeneous Ru-catalysed methanol dehydrogenation reactions. ACS Catal. 8, 6908–6913 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wei, Z., de Aguirre, A., Junge, K., Beller, M. & Jiao, H. Exploring the mechanisms of aqueous methanol dehydrogenation catalyzed by defined PNP Mn and Re pincer complexes under base-free as well as strong base conditions. Catal. Sci. Technol. 8, 3649–3665 (2018).

    Article  CAS  Google Scholar 

  119. Chandrasekhar, S. The principle of microscopic reversibility in organic chemistry — a critique. Res. Chem. Intermed. 17, 173–209 (1992).

    Article  CAS  Google Scholar 

  120. Krupka, R. M., Kaplan, H. & Laidler, K. J. Kinetic consequences of the principle of microscopic reversibility. Trans. Faraday Soc. 62, 2754–2759 (1966).

    Article  CAS  Google Scholar 

  121. Burwell, R. L. & Pearson, R. G. The principle of microscopic reversibility. J. Phys. Chem. 70, 300–302 (1966).

    Article  CAS  Google Scholar 

  122. Gusev, D. G. Dehydrogenative coupling of ethanol and ester hydrogenation catalyzed by pincer-type YNP complexes. ACS Catal. 6, 6967–6981 (2016).

    Article  CAS  Google Scholar 

  123. Vicent, C. & Gusev, D. G. ESI-MS insights into acceptorless dehydrogenative coupling of alcohols. ACS Catal. 6, 3301–3309 (2016).

    Article  CAS  Google Scholar 

  124. Spasyuk, D. & Gusev, D. G. Acceptorless dehydrogenative coupling of ethanol and hydrogenation of esters and imines. Organometallics 31, 5239–5242 (2012).

    Article  CAS  Google Scholar 

  125. Zweifel, T., Naubron, J. V. & Grützmacher, H. Catalyzed dehydrogenative coupling of primary alcohols with water, methanol, or amines. Angew. Chem. Int. Ed. 48, 559–563 (2009).

    Article  CAS  Google Scholar 

  126. van Putten, R. et al. Non-pincer-type manganese complexes as efficient catalysts for the hydrogenation of esters. Angew. Chem. Int. Ed. 56, 7531–7534 (2017).

    Article  CAS  Google Scholar 

  127. Chen, X., Jing, Y. & Yang, X. Unexpected direct hydride transfer mechanism for the hydrogenation of ethyl acetate to ethanol catalyzed by SNS pincer ruthenium complexes. Chem. Eur. J. 22, 1950–1957 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Zhang, L. et al. Acceptorless dehydrogenative coupling of alcohols catalysed by ruthenium PNP complexes: influence of catalyst structure and of hydrogen mass transfer. J. Catal. 340, 331–343 (2016).

    Article  CAS  Google Scholar 

  129. Qu, S. et al. Computational mechanistic study of Fe-catalyzed hydrogenation of esters to alcohols: improving catalysis by accelerating precatalyst activation with a Lewis base. ACS Catal. 4, 4377–4388 (2014).

    Article  CAS  Google Scholar 

  130. Chen, T. et al. Hydrogenation of esters catalyzed by ruthenium PN3-pincer complexes containing an aminophosphine arm. Organometallics 33, 4152–4155 (2014).

    Article  CAS  Google Scholar 

  131. Nguyen, D. H. et al. Deeper mechanistic insight into Ru pincer-mediated acceptorless dehydrogenative coupling of alcohols: exchanges, intermediates, and deactivation species. ACS Catal. 8, 4719–4734 (2018).

    Article  CAS  Google Scholar 

  132. Hasanayn, F. & Baroudi, A. Direct H/OR and OR/ORʹ metathesis pathways in ester hydrogenation and transesterification by Milstein’s catalyst. Organometallics 32, 2493–2496 (2013).

    Article  CAS  Google Scholar 

  133. Ito, M. et al. Catalytic hydrogenation of carboxamides and esters by well-defined Cp*Ru complexes bearing a protic amine ligand. J. Am. Chem. Soc. 133, 4240–4242 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Hayes, J. M. et al. Ketone hydrogenation with iridium complexes with “non N–H” ligands: the key role of the strong base. ACS Catal. 5, 4368–4376 (2015).

    Article  CAS  Google Scholar 

  135. Gu, G. et al. Iridium/f-ampha-catalyzed asymmetric hydrogenation of aromatic α-keto esters. Org. Chem. Front. 5, 1209–1212 (2018).

    Article  CAS  Google Scholar 

  136. Wang, Z. et al. Cooperative interplay between a flexible PNN-Ru(ii) complex and a NaBH4 additive in the efficient catalytic hydrogenation of esters. Catal. Sci. Technol. 7, 1297–1304 (2017).

    Article  CAS  Google Scholar 

  137. Gu, G. et al. Enantioselective iridium-catalyzed hydrogenation of α-keto amides to α-hydroxy amides. Org. Lett. 19, 5920–5923 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Liu, C., van Putten, R., Kulyaev, P. O., Filonenko, G. A. & Pidko, E. A. Computational insights into the catalytic role of the base promoters in ester hydrogenation with homogeneous non-pincer-based Mn-P,N catalyst. J. Catal. 363, 136–143 (2018).

    Article  CAS  Google Scholar 

  139. Moore, C. M., Bark, B. & Szymczak, N. K. Simple ligand modifications with pendent OH groups dramatically impact the activity and selectivity of ruthenium catalysts for transfer hydrogenation: the importance of alkali metals. ACS Catal. 6, 1981–1990 (2016).

    Article  CAS  Google Scholar 

  140. Liang, Z., Yang, T., Gu, G., Dang, L. & Zhang, X. Scope and mechanism on iridium-f-amphamide catalyzed asymmetric hydrogenation of ketones. Chin. J. Chem. 36, 851–856 (2018).

    Article  CAS  Google Scholar 

  141. Dub, P. A. & Ikariya, T. Catalytic reductive transformations of carboxylic and carbonic acid derivatives using molecular hydrogen. ACS Catal. 2, 1718–1741 (2012).

    Article  CAS  Google Scholar 

  142. Ojeda-Porras, A. & Gamba-Sánchez, D. Recent developments in amide synthesis using nonactivated starting materials. J. Org. Chem. 81, 11548–11555 (2016).

    Article  CAS  Google Scholar 

  143. Gunanathan, C., Ben-David, Y. & Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science 317, 790–792 (2007).

    Article  CAS  Google Scholar 

  144. Zweifel, T., Naubron, J.-V. & Grützmacher, H. Catalyzed dehydrogenative coupling of primary alcohols with water, methanol, or amines. Angew. Chem., Int. Ed. 48, 559–563 (2009).

    Article  CAS  Google Scholar 

  145. Oldenhuis, N. J., Dong, V. M. & Guan, Z. Catalytic acceptorless dehydrogenations: Ru-MACHO catalyzed construction of amides and imines. Tetrahedron 70, 4213–4218 (2014).

    Article  CAS  Google Scholar 

  146. Zhang, G., Yin, Z. & Zheng, S. Cobalt-catalyzed N-alkylation of amines with alcohols. Org. Lett. 18, 300–303 (2016).

    Article  CAS  Google Scholar 

  147. Landge, S. M., Borkin, D. A. & Török, B. Microwave-assisted preparation of trifluoroacetaldehyde (fluoral): isolation and applications. Tetrahedron Lett. 48, 6372–6376 (2007).

    Article  CAS  Google Scholar 

  148. Kwiecień, A. & Ciunik, Z. Stable hemiaminals: 2-aminopyrimidine derivatives. Molecules 20, 14365–14376 (2015).

    Article  CAS  Google Scholar 

  149. Mispelaere, C. & Roques, N. Hemiaminals of trifluoroacetaldehyde, as trifluoromethylating agents. Tetrahedron Lett. 40, 6411–6414 (1999).

    Article  CAS  Google Scholar 

  150. Folléas, B., Marek, I., Normant, J.-F. & Saint-Jalmes, L. Fluoroform: an efficient precursor for the trifluoromethylation of aldehydes Tetrahedron 56, 275–283 (2000).

    Article  CAS  Google Scholar 

  151. Ogata, O., Nara, H. & Nakayama, Y. Preparation of ruthenium complexes having bis(phosphinoalkyl)amine and N-heterocyclic carbene ligands, organic reaction catalysts containing them, and their use. WO2015163440A1 (2015).

    Article  CAS  Google Scholar 

  152. Artús Suàrez, L. et al. The Key Role of the Hemiaminal intermediate in the iron-catalyzed deaminative hydrogenation of amides. ACS Catal. 8, 8751–8762 (2018).

    Article  CAS  Google Scholar 

  153. Gusev, D. G. Rethinking the dehydrogenative amide synthesis. ACS Catal. 7, 6656–6662 (2017).

    Article  CAS  Google Scholar 

  154. Love, B. E., Boston, T. S., Nguyen, B. T. & Rorer, J. R. A comparison of imine forming methodologies. Org. Prep. Proced. Int. 31, 399–405 (1999).

    Article  CAS  Google Scholar 

  155. Mascavage, L. M., Sonnet, P. E. & Dalton, D. R. On the surface-catalyzed reaction between the gases 2,2-dimethylpropanal and methanamine. Formation of active-site imines. J. Org. Chem. 71, 3435–3443 (2006).

    Article  CAS  Google Scholar 

  156. Eisenstein, O. & Crabtree, R. H. Outer sphere hydrogenation catalysis. New J. Chem. 37, 21–27 (2013).

    Article  CAS  Google Scholar 

  157. Mills, M. R., Barnes, C. L. & Bernskoetter, W. H. Influences of bifunctional PNP-pincer ligands on low valent cobalt complexes relevant to CO2 hydrogenation. Inorg. Chem. 57, 1590–1597 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Puylaert, P. et al. Selective hydrogenation of α, β-unsaturated aldehydes and ketones by air-stable ruthenium NNS complexes. Chem. Eur. J. 23, 8473–8481 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Gorgas, N., Stöger, B., Veiros, L. F. & Kirchner, K. Highly efficient and selective hydrogenation of aldehydes: a well-defined Fe(ii) catalyst exhibits noble-metal activity. ACS Catal. 6, 2664–2672 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mellone, I. et al. Selective formic acid dehydrogenation catalyzed by Fe-PNP pincer complexes based on the 2,6-diaminopyridine scaffold. Organometallics 35, 3344–3349 (2016).

    Article  CAS  Google Scholar 

  161. Zhang, L., Han, Z., Zhao, X., Wang, Z. & Ding, K. Highly efficient ruthenium-catalyzed N-formylation of amines with H2 and CO2. Angew. Chem. Int. Ed. 54, 6186–6189 (2015).

    Article  CAS  Google Scholar 

  162. Zhang, Y. et al. Iron catalyzed CO2 hydrogenation to formate enhanced by Lewis acid co-catalysts. Chem. Sci. 6, 4291–4299 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Curley, J. B., Smith, N. E., Bernskoetter, W. H., Hazari, N. & Mercado, B. Q. Catalytic formic acid dehydrogenation and CO2 hydrogenation using iron PNRP pincer complexes with isonitrile ligands. Organometallics https://doi.org/10.1021/acs.organomet.8b00534 (2018).

    Article  CAS  Google Scholar 

  164. Lundgren, R. J. & Stradiotto, M. Rapid ketone transfer hydrogenation by employing simple, in situ prepared iridium(i) precatalysts supported by “non-N–H” P,N ligands. Chem. Eur. J. 14, 10388–10395 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Lundgren, R. J., Rankin, M. A., McDonald, R., Schatte, G. & Stradiotto, M. A formally zwitterionic ruthenium catalyst precursor for the transfer hydrogenation of ketones that does not feature an ancillary ligand N–H functionality. Angew. Chem. 119, 4816–4819 (2007).

    Article  Google Scholar 

  166. Sinopalnikova, I. S. et al. Ruthenium p-cymene iminophosphonamide complexes: activation under basic conditions and transfer hydrogenation catalysis. Eur. J. Inorg. Chem. 2018, 2285–2299 (2018).

    Article  CAS  Google Scholar 

  167. Schilter, D., Camara, J. M., Huynh, M. T., Hammes-Schiffer, S. & Rauchfuss, T. B. Hydrogenase enzymes and their synthetic models: the role of metal hydrides. Chem. Rev. 116, 8693–8749 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ogata, H., Lubitz, W. & Higuchi, Y. Structure and function of [NiFe] hydrogenases. J. Biochem. 160, 251–258 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Peters, J. W. et al. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta, Mol. Cell Res. 1853, 1350–1369 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Mulder, D. W. et al. Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19, 1038–1052 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Madden, C. et al. Catalytic turnover of [FeFe]-hydrogenase based on single-molecule imaging. J. Am. Chem. Soc. 134, 1577–1582 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Pandey, A. S., Harris, T. V., Giles, L. J., Peters, J. W. & Szilagyi, R. K. Dithiomethylether as a ligand in the hydrogenase H-cluster. J. Am. Chem. Soc. 130, 4533–4540 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853–1858 (1998).

    Article  CAS  PubMed  Google Scholar 

  175. Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7, 13–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  176. Mulder, D. W. et al. Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG. Nature 465, 248–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Lemon, B. J. & Peters, J. W. Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochem 38, 12969–12973 (1999).

    Article  CAS  Google Scholar 

  178. Silakov, A., Wenk, B., Reijerse, E. & Lubitz, W. 14N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge. Phys. Chem. Chem. Phys. 11, 6592–6599 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Lubitz, W., Reijerse, E. & van Gastel, M. [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem. Rev. 107, 4331–4365 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Carr, S. B. et al. Hydrogen activation by [NiFe]-hydrogenases. Biochem. Soc. Trans. 44, 863–868 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Kalz, K. F., Brinkmeier, A., Dechert, S., Mata, R. A. & Meyer, F. Functional model for the [Fe] hydrogenase inspired by the frustrated Lewis pair concept. J. Am. Chem. Soc. 136, 16626–16634 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Pelmenschikov, V. et al. Reaction coordinate leading to H2 production in [FeFe]-hydrogenase Identified by nuclear resonance vibrational spectroscopy and density functional theory. J. Am. Chem. Soc. 139, 16894–16902 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Belkova, N. V., Filippov, O. A. & Shubina, E. S. Z−H bond activation in (di)hydrogen bonding as a way to proton/hydride transfer and H2 evolution. Chem. Eur. J. 24, 1464–1470 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Belkova, N. V., Shubina, E. S. & Epstein, L. M. Diverse world of unconventional hydrogen bonds. Acc. Chem. Res. 38, 624–631 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Sadeghi, R. R. & Cheng, H.-P. The dynamics of proton transfer in a water chain. J. Chem. Phys. 111, 2086–2094 (1999).

    Article  CAS  Google Scholar 

  186. Hong, G., Cornish, A. J., Hegg, E. L. & Pachter, R. On understanding proton transfer to the biocatalytic [Fe–Fe]H sub-cluster in [Fe–Fe]H2ases: QM/MM MD simulations. Biochim. Biophys. Acta, Bionenerg. 1807, 510–517 (2011).

    Article  CAS  Google Scholar 

  187. Long, H., King, P. W. & Chang, C. H. Proton transport in Clostridium pasteurianum [FeFe] hydrogenase I: a computational study. J. Phys. Chem. B 118, 890–900 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Dub, P. A. et al. Hydrogen bonding to carbonyl hydride complex Cp*Mo(PMe3)2(CO)H and its role in proton transfer. Dalton Trans. 39, 2008–2015 (2010).

    Article  CAS  PubMed  Google Scholar 

  189. Ayllon, J. A., Sayers, S. F., Sabo-Etienne, S., Donnadieu, B. & Chaudret, B. Proton transfer in aminocyclopentadienyl ruthenium hydride complexes. Organometallics 18, 3981–3990 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Various aspects of the work that formed the foundation of this Review were graciously supported by the Laboratory Directed Research and Development (LDRD) programme at Los Alamos National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Pavel A. Dub or John C. Gordon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dub, P.A., Gordon, J.C. The role of the metal-bound N–H functionality in Noyori-type molecular catalysts. Nat Rev Chem 2, 396–408 (2018). https://doi.org/10.1038/s41570-018-0049-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0049-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing