Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A titanosaurian sauropod with Gondwanan affinities in the latest Cretaceous of Europe

Abstract

The origin of the last sauropod dinosaur communities in Europe and their evolution during the final 15 million years of the Cretaceous have become a complex phylogenetic and palaeobiogeographic puzzle characterized by the controversy on the alleged coexistence of immigrant, Gondwana-related taxa alongside relictual and insular clades. In this context, we describe a new titanosaurian sauropod dinosaur, Abditosaurus kuehnei gen. et sp. nov., from the Late Cretaceous (Maastrichtian) Tremp Group of Catalonia (Spain). Phylogenetic analyses recover Abditosaurus separately from other European titanosaurs, within a clade of otherwise South American and African saltasaurines. The affinity of the new taxon with southern landmasses is reinforced by spatiotemporal co-occurrence with Gondwanan titanosaurian oospecies in southern Europe. The large size and the lack of osteohistological features potentially related to insular dwarfism or size reduction support the idea that Abditosaurus belongs to an immigrant lineage, unequivocally distinct from some of the island dwarfs of the European archipelago. The arrival of the Abditosaurus lineage to the Ibero–Armorican Island is hypothesized to have occurred during the earliest Maastrichtian (70.6 Ma), probably as a result of a global and regional sea-level drop that reactivated ancient dispersal routes between Africa and Europe. The arrival of large-bodied titanosaurs to the European archipelago produced dramatic changes in its insular ecosystems and important evolutionary changes in its dinosaur faunas, especially with respect to the ‘island rule’ effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Type locality of Abditosaurus kuehnei gen. et sp. nov.
Fig. 2: Skeletal anatomy of Abditosaurus kuehnei gen. et sp. nov.
Fig. 3: Time-calibrated phylogenetic analysis and palaeobiogeographic context of Abditosaurus kuehnei gen. et sp. nov. and other saltasaurid titanosaurian sauropods.
Fig. 4: Chronostratigraphy and hypothesized dispersal route for Abditosaurus kuehnei gen. et sp. nov. and other latest Cretaceous Ibero–Armorican titanosaurs.

Similar content being viewed by others

Data availability

This published work and the nomenclatural acts it contains have been registered in ZooBank, the proposed online registration system for the International Code of Zoological Nomenclature (ICZN). The ZooBank LSIDs can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix ‘http://zoobank.org/’. All other data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Le Loeuff, J., Buffetaut, E. & Martin, M. The last stages of dinosaur faunal history in Europe: a succession of Maastrichtian dinosaur assemblages from the Corbières (southern France). Geol. Mag. 131, 625–630 (1994).

    Article  Google Scholar 

  2. Vila, B., Sellés, A. G. & Brusatte, S. L. Diversity and faunal changes in the latest Cretaceous dinosaur communities of southwestern Europe. Cretac. Res. 57, 552–564 (2016).

    Article  Google Scholar 

  3. Fondevilla, V. et al. Chronostratigraphic synthesis of the latest Cretaceous dinosaur turnover in south-western Europe. Earth Sci. Rev. 191, 168–189 (2019).

    Article  Google Scholar 

  4. Sanz, J. L., Powell, J. E., Le Loeuff, J., Martínez, R. & Pereda-Suberbiola, X. Sauropod remains from the Upper Cretaceous of Laño (northcentral Spain). Titanosaur phylogenetic relationships. Est. Mus. Cienc. Nat. Alava 14, 235–255 (1999).

    Google Scholar 

  5. Garcia, G., Amico, S., Fournier, F., Thouand, E. & Valentin, X. A new titanosaur genus (Dinosauria, Sauropoda) from the Late Cretaceous of southern France and its paleobiogeographic implications. Bull. Soc. Géol. Fr. 181, 269–277 (2010).

    Article  Google Scholar 

  6. Díez Díaz, V. et al. A new titanosaur (Dinosauria: Sauropoda) from the Upper Cretaceous of Velaux La-Bastide Neuve (southern France). Hist. Biol. https://doi.org/10.1080/08912963.2020.1841184 (2020).

  7. Le Loeuff, J. Ampelosaurus atacis (nov. gen., nov. sp.), a new titanosaurid (Dinosauria, Sauropoda) from the Late Cretaceous of the Upper Aude Valley (France). C. R. Acad. Sci. II 321, 693–700 (1995).

    Google Scholar 

  8. Díez Díaz, V. et al. A new titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Lo Hueco (Cuenca, Spain). Cretac. Res. 68, 49–60 (2016).

    Article  Google Scholar 

  9. Company, J. Bone histology of the titanosaur Lirainosaurus astibiae (Dinosauria: Sauropoda) from the latest Cretaceous of Spain. Naturwissenschaften 98, 67–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Klein, N. et al. Modified laminar bone in Ampelosaurus atacis and other titanosaurs (Sauropoda): implications for life history and physiology. PLoS ONE 7, e36907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Díez Díaz, V. et al. The titanosaurian dinosaur Atsinganosaurus velauciensis (Sauropoda) from the Upper Cretaceous of southern France: new material, phylogenetic affinities, and palaeobiogeographical implications. Cretac. Res. 91, 429–456 (2018).

    Article  Google Scholar 

  12. Benítez-López, A. et al. The island rule explains consistent patterns of body size evolution in terrestrial vertebrates. Nat. Ecol. Evol. 5, 768–786 (2021).

    Article  PubMed  Google Scholar 

  13. Benton, M. J. et al. Dinosaurs and the island rule: the dwarfed dinosaurs from Haţeg Island. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 438–454 (2010).

    Article  Google Scholar 

  14. Canudo, J. I. Descripción de un fragmento proximal de fémur de Titanosauridae (Dinosauria, Sauropoda) del Maastrichtiense superior de Serraduy (Huesca). In Proc. XVII Jornadas de la Sociedad Española de Paleontología (eds Meléndez, G. et al.) 255–262 (Sociedad Española de Paleontología y Área y Museo de Paleontología de la Universidad de Zaragoza, 2001).

  15. Vila, B. et al. The diversity of sauropods and their first taxonomic succession from the latest Cretaceous of south-western Europe: clues to demise and extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 350352, 19–38 (2012).

    Article  Google Scholar 

  16. Sallam, H. M. et al. New Egyptian sauropod reveals Late Cretaceous dinosaur dispersal between Europe and Africa. Nat. Ecol. Evol. 2, 445–451 (2018).

    Article  PubMed  Google Scholar 

  17. Buffetaut, E. Archosaurian reptiles with Gondwanan affinities in the Upper Cretaceous of Europe. Terra Nova 1, 69–74 (1989).

    Article  Google Scholar 

  18. Le Loeuff, J. The Campano-Maastrichtian vertebrate faunas from southern Europe and their relationships with other faunas in the world; palaeobiogeographical implications. Cretac. Res. 12, 93–114 (1991).

    Article  Google Scholar 

  19. Pereda-Suberbiola, X. Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review. Bull. Soc. Geol. Fr. 180, 57–71 (2009).

    Article  Google Scholar 

  20. Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X. & Brusatte, S. L. Island life in the Cretaceous – faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago. ZooKeys 469, 1–161 (2015).

    Article  Google Scholar 

  21. Ezcurra, M. D. & Agnolín, F. L. A new global palaeobiogeographical model for the late Mesozoic and early Tertiary. Syst. Biol. 61, 553–566 (2012).

    Article  PubMed  Google Scholar 

  22. Sellés, A. G. & Vila, B. Re-evaluation of the age of some dinosaur localities from the southern Pyrenees by means of megaloolithid oospecies. J. Iber. Geol. 41, 125–139 (2015).

    Google Scholar 

  23. Bonaparte, J. F. & Coria, R. A. Un nuevo y gigantesco saurópodo titanosaurio de la Formación Río Limay (Albiano–Cenomaniano) de la Provincia del Neuquén, Argentina. Ameghiniana 30, 217–282 (1993).

    Google Scholar 

  24. Curry Rogers, K. The postcranial osteology of Rapetosaurus krausei (Sauropoda: Titanosauria) from the Late Cretaceous of Madagascar. J. Vertebr. Paleontol. 29, 1046–1086 (2009).

    Article  Google Scholar 

  25. Zurriaguz, V. & Powell, J. New contributions to the presacral osteology of Saltasaurus loricatus (Sauropoda, Titanosauria) from the Upper Cretaceous of northern Argentina. Cretac. Res. 54, 283–300 (2015).

    Article  Google Scholar 

  26. Coria, R. A., Filippi, L. S., Chiappe, L. M., García, R. & Arcucci, A. B. Overosaurus paradasorum gen. et sp. nov., a new sauropod dinosaur (Titanosauria: Lithostrotia) from the Late Cretaceous of Neuquén, Patagonia, Argentina. Zootaxa 3683, 357–376 (2013).

    Article  PubMed  Google Scholar 

  27. Calvo, J. O., González Riga, B. J. & Porfiri, J. D. A new titanosaur sauropod from the Late Cretaceous of Neuquén, Patagonia, Argentina. Arq. Mus. Nac. 65, 485–504 (2007).

    Google Scholar 

  28. Jain, S. L. & Bandyopadhyay, S. New titanosaurid (Dinosauria: Sauropoda) from the Late Cretaceous of central India. J. Vertebr. Paleontol. 17, 114–136 (1997).

    Article  Google Scholar 

  29. Gorscak, E. & O’Connor, P. M. A new African titanosaurian sauropod dinosaur from the middle Cretaceous Galula Formation (Mtuka Member), Rukwa Rift Basin, southwestern Tanzania. PLoS ONE 14, e0211412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kellner, A. W. A. & de Azevedo, S. A. K. A new sauropod dinosaur (Titanosauria) from the Late Cretaceous of Brazil. Nat. Sci. Mus. Monogr. 15, 111–142 (1999).

    Google Scholar 

  31. Novas, F. E. et al. Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina. Rev. Mus. Argent. Cienc. Nat. 21, 217–293 (2019).

    Article  Google Scholar 

  32. Wilson, J. A., D’Emic, M. D., Curry Rogers, K. A., Mohabey, D. M. & Sen, S. Reassessment of the sauropod dinosaur Jainosaurus (=“Antarctosaurus”) septentrionalis from the Upper Cretaceous of India. Contrib. Mus. Paleontol. Univ. Mich. 32, 17–40 (2009).

    Google Scholar 

  33. Powell, J. E. Revision of South American titanosaurid dinosaurs: palaeobiological, palaeobiogeographical and phylogenetic aspects. Rec. Queen Vic. Mus. 111, 1–173 (2003).

    Google Scholar 

  34. Smith, J. B. et al. A giant sauropod dinosaur from an Upper Cretaceous mangrove deposit in Egypt. Science 292, 1704–1706 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Otero, A. & Vizcaíno, S. F. Hindlimb musculature and function of Neuquensaurus australis (Sauropoda: Titanosauria). Ameghiniana 45, 333–348 (2008).

    Google Scholar 

  36. von Huene, F. Los saurisquios y ornitisquios del Cretáceo Argentino. Mus. La Plata 3, 1–196 (1929).

    Google Scholar 

  37. Mannion, P. D. & Otero, A. A reappraisal of the Late Cretaceous Argentinean sauropod dinosaur Argyrosaurus superbus, with a description of a new titanosaur genus. J. Vertebr. Paleontol. 32, 614–638 (2012).

    Article  Google Scholar 

  38. Mocho, P., Pérez-García, A., Martín Jiménez, M. & Ortega, F. New remains from the Spanish Cenomanian shed light on the Gondwanan origin of European Early Cretaceous titanosaurs. Cretac. Res. 95, 164–190 (2019).

    Article  Google Scholar 

  39. Díez Díaz, V., Pereda Suberbiola, X. & Sanz, J. L. Appendicular skeleton and dermal armour of the Late Cretaceous titanosaur Lirainosaurus astibiae (Dinosauria: Sauropoda) from Spain. Palaeontol. Electronica 16, 19A (2013).

    Google Scholar 

  40. Le Loeuff, J. in Thunder-Lizards: The Sauropodomorph Dinosaurs (eds Tidwell, V. & Carpenter, K.) 115–137 (Indiana Univ. Press, 2005).

  41. Borsuk-Bialynicka, M. A new camarasaurid sauropod Opisthocoelicaudia skarzynskii gen. n., sp. n. from the Upper Cretaceous of Mongolia. Acta Palaeontol. Pol. 37, 5–63 (1977).

    Google Scholar 

  42. Filippi, L. S., García, R. A. & Garrido, A. A new sauropod titanosaur from the Plottier Formation (Upper Cretaceous) of Patagonia (Argentina). Geol. Acta 9, 1–12 (2011).

    Google Scholar 

  43. Salgado, L., Coria, R. A. & Calvo, J. O. Evolution of titanosaurid sauropods. I: phylogenetic analysis based on the postcranial evidence. Ameghiniana 34, 3–32 (1997).

    Google Scholar 

  44. D’Emic, M. D. The early evolution of titanosauriform sauropod dinosaurs. Zool. J. Linn. Soc. 166, 624–671 (2012).

    Article  Google Scholar 

  45. Tschopp, E. & Mateus, O. Clavicles, interclavicles, gastralia, and sternal ribs in sauropod dinosaurs: new reports from Diplodocidae and their morphological, functional and evolutionary implications. J. Anat. 222, 321–340 (2013).

    Article  PubMed  Google Scholar 

  46. Wilson, J. A. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zool. J. Linn. Soc. 136, 217–276 (2002).

    Article  Google Scholar 

  47. Powell, J. E. in Los Dinosaurios y Su Entorno Biótico (eds Sanz, J. L. & Buscalioni, A. D.) 165–230 (Instituto ‘Juan de Valdés’, 1992).

  48. Otero, A. The appendicular skeleton of Neuquensaurus, a Late Cretaceous saltasaurine sauropod from Patagonia, Argentina. Acta Palaeontol. Pol. 55, 399–426 (2010).

    Article  Google Scholar 

  49. Gilmore, C. W. Reptilian Fauna of the North Horn Formation of Central Utah Professional Paper 210-C (USGS Numbered Series, 1946).

  50. Ullmann, P. V. & Lacovara, K. J. Appendicular osteology of Dreadnoughtus schrani, a giant titanosaurian (Sauropoda, Titanosauria) from the Upper Cretaceous of Patagonia, Argentina. J. Vertebr. Paleontol. 36, e1225303 (2016).

    Article  Google Scholar 

  51. Poropat, S. F. Carl Wiman’s sauropods: the Uppsala Museum of Evolution’s collection. GFF 135, 104–119 (2013).

    Article  CAS  Google Scholar 

  52. Cerda, I. A., Salgado, L. & Powell, J. E. Extreme postcranial pneumaticity in sauropod dinosaurs from South America. Paläontol. Z. 86, 441–449 (2012).

    Article  Google Scholar 

  53. Wilson, J. A. & Carrano, M. T. Titanosaurs and the origin of “wide-gauge” trackways: a biomechanical and systematic perspective on sauropod locomotion. Paleobiol. 25, 252–267 (1999).

    Article  Google Scholar 

  54. Upchurch, P., Barrett, P. & Dodson, P. in The Dinosauria (eds Weishampel, D. B. et al.) 259–324 (Univ. California Press, 2004).

  55. Lehman, T. M. & Coulson, A. B. A juvenile specimen of the sauropod dinosaur Alamosaurus sanjuanensis from the Upper Cretaceous of Big Bend National Park, Texas. J. Paleontol. 76, 156–172 (2002).

    Article  Google Scholar 

  56. Gallina, P. A. & Otero, A. Reassessment of Laplatasaurus araukanicus (Sauropoda: Titanosauria) from the Upper Cretaceous of Patagonia, Argentina. Ameghiniana 52, 487–501 (2015).

    Article  Google Scholar 

  57. Wilson, J. A. & Upchurch, P. Redescription and reassessment of the phylogenetic affinities of Euhelopus zdanskyi (Dinosauria: Sauropoda) from the Early Cretaceous of China. J. Syst. Palaeontol. 7, 199–239 (2009).

    Article  Google Scholar 

  58. Sereno, P. C. A rationale for phylogenetic definitions, with application to the higher-level taxonomy of Dinosauria. Neues Jahrb. Geol. Paläontol. Abh. 210, 41–83 (1998).

    Article  Google Scholar 

  59. Chiappe, L. M. et al. Sauropod dinosaur embryos from the Late Cretaceous of Patagonia. Nature 396, 258–261 (1998).

    Article  CAS  Google Scholar 

  60. Haq, B. U. Cretaceous eustasy revisited. Glob. Planet. Change 113, 44–58 (2014).

    Article  Google Scholar 

  61. Gheerbrant, E. & Rage, J.-C. Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeogr. Palaeoclimatol. Palaeoecol. 241, 224–246 (2006).

    Article  Google Scholar 

  62. Canudo, J. I. et al. What Iberian dinosaurs reveal about the bridge said to exist between Gondwana and Laurasia in the Early Cretaceous. Bull. Soc. Géol. Fr. 180, 5–11 (2009).

    Article  Google Scholar 

  63. Dal Sasso, C., Pierangelini, G., Famiani, F., Cau, A. & Nicosia, U. First sauropod bones from Italy offer new insights on the radiation of Titanosauria between Africa and Europe. Cretac. Res. 64, 88–109 (2016).

    Article  Google Scholar 

  64. Stein, K. et al. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria). Proc. Natl Acad. Sci. USA 107, 9258–9263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Botfalvai, G. et al. ‘X’ marks the spot! Sedimentological, geochemical and palaeontological investigations of Upper Cretaceous (Maastrichtian) vertebrate fossil localities from the Vălioara valley (Densuş-Ciula Formation, Hațeg Basin, Romania). Cretac. Res. 123, 104781 (2021).

    Article  Google Scholar 

  66. Csiki-Sava, Z. et al. The east side story–the Transylvanian latest Cretaceous continental vertebrate record and its implications for understanding Cretaceous–Paleogene boundary events. Cretac. Res. 57, 662–698 (2016).

    Article  Google Scholar 

  67. Campione, N. E. & Evans, D. C. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol. 10, 60 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. González Riga, B. J., Lamanna, M. C., Ortiz David, L. D., Calvo, J. O. & Coria, J. P. A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot. Sci. Rep. 6, 19165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Seebacher, F. New method to calculate allometric length–mass relationships of dinosaurs. J. Vertebr. Paleontol. 21, 51–60 (2001).

    Article  Google Scholar 

  70. Mallison, H. & Wings, O. Photogrammetry in paleontology— a practical guide. J. Paleontol. Tech. 12, 1–31 (2014).

    Google Scholar 

  71. Matthews, N., Noble, T. & Breithaupt, B. H. in Dinosaur Tracks—The Next Steps (eds Falkingham, P. L. et al.) 28–55 (Indiana Univ. Press, 2016).

  72. Falkingham, P. L. et al. A standard protocol for documenting modern and fossil ichnological data. Palaeontology 61, 469–480 (2018).

    Article  Google Scholar 

  73. Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Stadler, T., Kühnert, D., Bonhoeffer, S. & Drummond, A. J. Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl Acad. Sci. USA 110, 228–233 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Matzke, N. J. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).

    Article  Google Scholar 

  76. Ogg, J. G. & Hinnov, L. A. in The Geological Time Scale (eds Gradstein, F. M. et al.) 793–853 (Elsevier, 2012).

  77. Vianey-Liaud, M., Khosla, A. & Garcia, G. Relationships between European and Indian dinosaur eggshells of the oofamily Megaloolithidae. J. Vertebr. Paleontol. 23, 575–585 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Montané, E. Aguirre, A. Lacasa and J. V. Santafé for providing key information on early excavations; U. Klebe and A. Klebe for transcripts and translation of WGK’s field notes, and for providing permission to reproduce WGK and field-notes images in Fig. 1 and Supplementary Fig. 2; R. Gaete, J. González, E. Nieto, A. Vallès and I. Fernández for logistics and fossil preparation; all colleagues who participated in the field campaigns; E. Gorscak for kindly providing XML files for BEAST 2.1.3; B. F. Rotatori for assisting with Bayesian phylogenetic methods; M. Belvedere for assisting with photogrammetry techniques; B. González Riga for providing permission to reproduce the skeletal reconstruction in Fig. 1; R. Contreras for providing the image for Supplementary Fig. 3; R. Glasgow for reviewing the English; M. C. Lamanna and V. Díez Díaz for helpful reviews; and J. A. Wilson for constructive feedback on an early version of the manuscript. MNCN provided permissions for the study, sampling and casting of MNCN specimens, and Archivo MNCN-CSIC provided permission to reproduce images for Supplementary Figs. 1 and 2. This research is part of the project I+D+i/PID2020-119811GB-I00 funded by MCIN/ AEI/10.13039/501100011033/ (B.V.). Additional funding was provided by the CERCA Programme and the project CLT009/18/00067 funded by the Generalitat de Catalunya (B.V., A.S. and A.G.), the Committee for Research and Exploration of the National Geographic Society (grant 9148-12 to B.V.), MEIC, MCI and MEC (CGL2017-85038-P, CGL2016-77230-P and CGL2011-30069-C02-01 to A.G., B.V., A.S. and J.I.C.) and Fundação para a Ciência e a Tecnología (PTDC/CTA-PAL/31656/2017, UIDB/04035/2020 and PTDC/CTA-PAL/2217/2021 to M.M.-A.). Fossil preparation was supported by the Servei de Museus–Departament de Cultura of the Generalitat de Catalunya (grants 2015/104328, CLT005/16/00008, CLT005/19/00045) and the Institut d’Estudis Ilerdencs (grant 201602412).

Author information

Authors and Affiliations

Authors

Contributions

B.V. devised and directed the project and supervised the fieldwork; B.V., A.S., A.G., N.L.R. and J.I.C. collected the fossils and taphonomic data in the field; B.V., A.S. and A.G. supervised fossil preparation; B.V. described and measured the fossils, and collected historical information; M.M.-A. and B.V. performed phylogenetic and biogeographic analyses; A.G.-D., A.S. and B.V. conducted histological analyses; N.L.R. performed the photogrammetry and 3D modelling; B.V. wrote the paper with substantial inputs from A.S., M.M.-A., A.G.-D. and N.L.R. B.V., A.S. and M.M.-A. designed the figures. B.V., A.S., M.M.-A., N.L.R., A.G.-D., A.G. and J.I.C. reviewed and edited the original draft.

Corresponding author

Correspondence to Bernat Vila.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Veronica Díez Díaz and Matthew Lamanna for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Results, Tables 1–7 and References.

Reporting Summary.

Supplementary Data

Script for TNT v.1.5 to replicate the parsimony analysis.

Supplementary Data

TNT file including the character scores for the parsimony analyses.

Supplementary Data

Nexus file for MrBayes 3.2.7a to reproduce the non-clock analyses.

Supplementary Data

Script for Beast 2.4.7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vila, B., Sellés, A., Moreno-Azanza, M. et al. A titanosaurian sauropod with Gondwanan affinities in the latest Cretaceous of Europe. Nat Ecol Evol 6, 288–296 (2022). https://doi.org/10.1038/s41559-021-01651-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01651-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing