Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism

Abstract

Combinations of nucleoside and non-nucleoside inhibitors (NNRTIs) of HIV-1 reverse transcriptase (RT) are widely used in anti-AIDS therapies. Five NNRTIs, including nevirapine, are clinical drugs; however, the molecular mechanism of inhibition by NNRTIs is not clear. We determined the crystal structures of RT–DNA–nevirapine, RT–DNA, and RT–DNA–AZT-triphosphate complexes at 2.85-, 2.70- and 2.80-Å resolution, respectively. The RT–DNA complex in the crystal could bind nevirapine or AZT-triphosphate but not both. Binding of nevirapine led to opening of the NNRTI-binding pocket. The pocket formation caused shifting of the 3′ end of the DNA primer by ~5.5 Å away from its polymerase active site position. Nucleic acid interactions with fingers and palm subdomains were reduced, the dNTP-binding pocket was distorted and the thumb opened up. The structures elucidate complementary roles of nucleoside and non-nucleoside inhibitors in inhibiting RT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polymerase domain of HIV-1 RT in complex with DNA.
Figure 2: Effects of nevirapine on polymerase active site conformation and dNTP-binding.
Figure 3: Impact of nevirapine binding on thumb, fingers and DNA.
Figure 4: A molecular mechanism of non-nucleoside inhibition and impact of DNA binding on resistance to non-nucleoside drugs.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. & Steitz, T.A. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256, 1783–1790 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Jacobo-Molina, A. et al. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc. Natl. Acad. Sci. USA 90, 6320–6324 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang, H., Chopra, R., Verdine, G.L. & Harrison, S.C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282, 1669–1675 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Ren, J. & Stammers, D.K. Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. Virus Res. 134, 157–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Tu, X. et al. Structural basis of HIV-1 resistance to AZT by excision. Nat. Struct. Mol. Biol. 17, 1202–1209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Das, K. et al. Roles of conformational and positional adaptability in structure-based design of TMC125–R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J. Med. Chem. 47, 2550–2560 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Steitz, T.A. DNA polymerases: structural diversity and common mechanisms. J. Biol. Chem. 274, 17395–17398 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Sarafianos, S.G. et al. Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site. Chem. Biol. 6, R137–R146 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Rodgers, D.W. et al. The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 92, 1222–1226 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hsiou, Y. et al. Structure of unliganded HIV-1 reverse transcriptase at 2.7 Å resolution: implications of conformational changes for polymerization and inhibition mechanisms. Structure 4, 853–860 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Rittinger, K., Divita, G. & Goody, R.S. Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors. Proc. Natl. Acad. Sci. USA 92, 8046–8049 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spence, R.A., Kati, W.M., Anderson, K.S. & Johnson, K.A. Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science 267, 988–993 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sluis-Cremer, N., Temiz, N.A. & Bahar, I. Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Curr. HIV Res. 2, 323–332 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geitmann, M., Unge, T. & Danielson, U.H. Biosensor-based kinetic characterization of the interaction between HIV-1 reverse transcriptase and non-nucleoside inhibitors. J. Med. Chem. 49, 2367–2374 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Tachedjian, G., Orlova, M., Sarafianos, S.G., Arnold, E. & Goff, S.P. Nonnucleoside reverse transcriptase inhibitors are chemical enhancers of dimerization of the HIV type 1 reverse transcriptase. Proc. Natl. Acad. Sci. USA 98, 7188–7193 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abbondanzieri, E.A. et al. Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 453, 184–189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, S., Abbondanzieri, E.A., Rausch, J.W., Le Grice, S.F. & Zhuang, X. Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates. Science 322, 1092–1097 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peletskaya, E.N., Kogon, A.A., Tuske, S., Arnold, E. & Hughes, S.H. Nonnucleoside inhibitor binding affects the interactions of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase with DNA. J. Virol. 78, 3387–3397 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia, Q., Radzio, J., Anderson, K.S. & Sluis-Cremer, N. Probing nonnucleoside inhibitor-induced active-site distortion in HIV-1 reverse transcriptase by transient kinetic analyses. Protein Sci. 16, 1728–1737 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ren, J. et al. High resolution structures of HIV-1 RT from four RT-inhibitor complexes. Nat. Struct. Biol. 2, 293–302 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Das, K. et al. Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. J. Mol. Biol. 264, 1085–1100 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Meyer, P.R., Matsuura, S.E., Mian, A.M., So, A.G. & Scott, W.A. A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol. Cell 4, 35–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Arion, D., Kaushik, N., McCormick, S., Borkow, G. & Parniak, M.A. Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 37, 15908–15917 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Gu, Z., Quan, Y., Li, Z., Arts, E.J. & Wainberg, M.A. Effects of non-nucleoside inhibitors of human immunodeficiency virus type 1 in cell-free recombinant reverse transcriptase assays. J. Biol. Chem. 270, 31046–31051 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Mitsuya, H. et al. 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. USA 82, 7096–7100 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Katz, R.A. & Skalka, A.M. The retroviral enzymes. Annu. Rev. Biochem. 63, 133–173 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Sarafianos, S.G. et al. Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J. 20, 1449–1461 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Das, K. et al. Structural basis for the role of the K65R mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance. J. Biol. Chem. 284, 35092–35100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lansdon, E.B. et al. Visualizing the molecular interactions of a nucleotide analog, GS-9148, with HIV-1 reverse transcriptase-DNA complex. J. Mol. Biol. 397, 967–978 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Tuske, S. et al. Structures of HIV-1 RT-DNA complexes before and after incorporation of the anti-AIDS drug tenofovir. Nat. Struct. Mol. Biol. 11, 469–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Mizrahi, V., Henrie, R.N., Marlier, J.F., Johnson, K.A. & Benkovic, S.J. Rate-limiting steps in the DNA polymerase I reaction pathway. Biochemistry 24, 4010–4018 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Beese, L.S., Derbyshire, V. & Steitz, T.A. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260, 352–355 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Li, Y., Korolev, S. & Waksman, G. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J. 17, 7514–7525 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Santoso, Y. et al. Conformational transitions in DNA polymerase I revealed by single-molecule FRET. Proc. Natl. Acad. Sci. USA 107, 715–720 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Obeid, S. et al. Replication through an abasic DNA lesion: structural basis for adenine selectivity. EMBO J. 29, 1738–1747 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zahn, K.E., Belrhali, H., Wallace, S.S. & Doublie, S. Caught bending the A-rule: crystal structures of translesion DNA synthesis with a non-natural nucleotide. Biochemistry 46, 10551–10561 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Cai, H., Bloom, L.B., Eritja, R. & Goodman, M.F. Kinetics of deoxyribonucleotide insertion and extension at abasic template lesions in different sequence contexts using HIV-1 reverse transcriptase. J. Biol. Chem. 268, 23567–23572 (1993).

    CAS  PubMed  Google Scholar 

  38. Joyce, C.M. & Benkovic, S.J. DNA polymerase fidelity: kinetics, structure, and checkpoints. Biochemistry 43, 14317–14324 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Molina, J.M. et al. Rilpivirine versus efavirenz with tenofovir and emtricitabine in treatment-naive adults infected with HIV-1 (ECHO): a phase 3 randomised double-blind active-controlled trial. Lancet 378, 238–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Carr, A. et al. A controlled trial of nevirapine plus zidovudine versus zidovudine alone in p24 antigenaemic HIV-infected patients. The Dutch-Italian-Australian Nevirapine Study Group. AIDS 10, 635–641 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Odriozola, L. et al. Non-nucleoside inhibitors of HIV-1 reverse transcriptase inhibit phosphorolysis and resensitize the 3′-azido-3′-deoxythymidine (AZT)-resistant polymerase to AZT-5′-triphosphate. J. Biol. Chem. 278, 42710–42716 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Basavapathruni, A., Bailey, C.M. & Anderson, K.S. Defining a molecular mechanism of synergy between nucleoside and nonnucleoside AIDS drugs. J. Biol. Chem. 279, 6221–6224 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Selmi, B. et al. The Y181C substitution in 3′-azido-3′-deoxythymidine-resistant human immunodeficiency virus, type 1, reverse transcriptase suppresses the ATP-mediated repair of the 3′-azido-3′-deoxythymidine 5′-monophosphate-terminated primer. J. Biol. Chem. 278, 40464–40472 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Xu, H.T. et al. Compensation by the E138K mutation in HIV-1 reverse transcriptase for deficits in viral replication capacity and enzyme processivity associated with the M184I/V mutations. J. Virol. 85, 11300–11308 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Biswal, B.K. et al. Crystal structures of the RNA-dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by non-nucleoside inhibitors. J. Biol. Chem. 280, 18202–18210 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Mukhopadhyay, J. et al. The RNA polymerase 'switch region' is a target for inhibitors. Cell 135, 295–307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bauman, J.D. et al. Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design. Nucleic Acids Res. 36, 5083–5092 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DeStefano, J.J. et al. Characterization of an RNase H deficient mutant of human immunodeficiency virus-1 reverse transcriptase having an aspartate to asparagine change at position 498. Biochim. Biophys. Acta 1219, 380–388 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Hou, X., Wang, G., Gaffney, B.L. & Jones, R.A. Synthesis of guanosine and deoxyguanosine phosphoramidites with cross-linkable thioalkyl tethers for direct incorporation into RNA and DNA. Nucleosides Nucleotides Nucleic Acids 28, 1076–1094 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sarafianos, S.G. et al. Trapping HIV-1 reverse transcriptase before and after translocation on DNA. J. Biol. Chem. 278, 16280–16288 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Otwinowski, Z. & Minor, W. DENZO and SCALEPACK. in International Tables for Crystallography Vol. F: Crystallography of Biological Macromolecules (Kluwer, Boston, 2001).

  52. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 8060–8065 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cowtan, K. 'dm': An automated procedure for phase improvement by density modification. in Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography Vol. 31, 34–38 (Daresbury Laboratory, Warrington, UK, 1994).

  54. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the staff members at the Cornell High Energy Synchrotron Source (CHESS) and Brookhaven National Laboratory (BNL) for their generous allocation of data collection time. We thank A. Clark, S. Hughes and S. Tuske for advice, and we thank S. Sarafianos and A. Shatkin for helpful comments on the manuscript. We are grateful to the US National Institutes of Health for R21 Award AI 087201 to K.D. and R37 MERIT Award AI 27690 to E.A.

Author information

Authors and Affiliations

Authors

Contributions

K.D. and E.A. designed the project, S.E.M. conducted the experiments, K.D. carried out structural studies and analyses, and J.D.B. cloned and expressed the protein. K.D., S.E.M. and E.A. wrote the paper.

Corresponding authors

Correspondence to Kalyan Das or Eddy Arnold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 492 kb)

Supplementary Movie 1

Morphing between RT–DNA and nevirapine-ternary structures illustrates the structural changes in the polymerase domain of HIV-1 RT upon nevirapine (green space filling) binding. The primer grip on b12-b13-b14 (magenta) sheet is displaced by ~4 Å, fingers and thumb subdomains are repositioned, and the nucleic acid is shifted out of the polymerase active site. The nonnucleoside-binding pocket residues Tyr181, Tyr188, and Trp229 (cyan) are rearranged/repositioned upon nevirapine binding. The polymerase active-side residue Asp186 is rearranged to accommodate the primer terminal 3'-azido group (blue) in RT–DNA and AZTTP-ternary structures. (MOV 4824 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, K., Martinez, S., Bauman, J. et al. HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nat Struct Mol Biol 19, 253–259 (2012). https://doi.org/10.1038/nsmb.2223

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing