Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Outline structures for the extracellular domains of the fibroblast growth factor receptors

Abstract

Fibroblast growth factor receptors (FGFRs) have three extracellular domains that belong to the immunoglobulin superfamily. We have determined the outline structures for these domains on the basis of their homology to the I set molecule telokin. The outline structures describe the relative positions of residues in each domain; their major secondary structures, and the extent to which residues are accessible to the solvent. They also provide the basis of a coherent description of the change in recognition properties that occur when the IIIb and IIIc exons are switched and of the effects of mutations in FGFRs that cause genetic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Wilkie, A.O.M., Morriss-Kay, G.M., Jones, E.Y. & Heath, J.K. Functions of fibroblast growth factors and their receptors. Curr. Biol. 5, 500–507 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, D.E. & Williams, L.T. Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res. 60, 1–41 (1993).

    CAS  PubMed  Google Scholar 

  3. Johnson, D., Lu, J., Chen, H., Werner, S. & Williams, L. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Molec. cell. Biol. 11, 4627–4634 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miki, T. et al. Determination of ligand-binding specificity by alternative splicing: Two distinct growth factor receptors encoded by a single gene. Proc. natn. Acad. Sci. U.S.A. 89, 246–250 (1992).

    Article  CAS  Google Scholar 

  5. Chellaiah, A.T., McEwen, D.G., Werner, S., Xu, J. & Ornitz, D.M. Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J. biol. Chem. 269, 11620–11627 (1994).

    CAS  PubMed  Google Scholar 

  6. Shiozaki, C. et al. Cloning of cDNA and genomic DNA encoding fibroblast growth factor receptor-4 of Xenopus laevis. Gene 152, 215–219 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Hanneken, A., Ying, W., Ling, N. & Baird, A. Identification of soluble forms of the fibroblast growth factor receptor in blood. Proc. natn. Acad. Sci. U.S.A. 91, 9170–9174 (1994).

    Article  CAS  Google Scholar 

  8. Harpaz, Y. & Chothia, C. Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J. molec. Biol. 238, 528–539 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Hubbard, S.R., Wei, L., Ellis, L. & Hendrickson, W.A. Structure of thetyrosine kinase domain of the human insulin receptor. Nature 372, 746–754 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Chothia, C. & Lesk, A.M. The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Williams, A.F. A year in the life of the immunoglobulin superfamily. Immunology Today 8, 298–303 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Williams, A.F. & Barclay, A.N. The immunoglobulin superfamily-domains for surface recognition. A. Rev. Immunol. 6, 381–405 (1988).

    Article  CAS  Google Scholar 

  13. Bork, P., Holm, L. & Sander, C. The immunoglobulin fold: structural classification, sequence patterns and common core. J. molec. Biol. 242, 309–320 (1995).

    Google Scholar 

  14. Lesk, A.M. & Chothia, C. Evolution of proteins formed by beta sheets II. The core of immunoglobulin domains. J. molec. Biol. 160, 325–342 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Holden, H.M., Ito, M., Hartshorne, D.J. & Rayment, I. X-ray structure dermination of Telokin, the C-terminal domain of myosin light chain kinase at 2.8Å resolution. J. molec. Biol. 227, 840–851 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Jones, E.Y. et al. Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule at 1.8 Å resolution. Nature 373, 539–544 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Pfuhl, M. & Pastore, A. Tertiary structure of an immunoglobulin-like domain from the giant muscle protein titin: a new member of the I set. Structure 3, 391–401 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, B. & Richards, F.M. The interpretation of protein structures: estimation of static accessibility. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  PubMed  Google Scholar 

  19. Miller, S., Janin, J., Lesk, A.M. & Chothia, C. Interior and surface of monomeric proteins. J. molec. Biol. 196, 641–656 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Pantoliano, M.W. et al. Multivalent ligand-receptor interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerisation. Biochemistry 33, 10229–10248 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Shi, D.L., Launay, C., Fromentoux, V., Feige, J.J. & Boucaut, J.C. Expression of fibroblast growth factor receptor-2 splice variants is developmentally and tissue-specifically regulated in the amphibian embryo. Dev. Biol. 164, 173–182 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Zimmer, Y., Givol, D. & Yayon, A. Multiple structural elements determine ligand binding of fibroblast growth factor receptors. Evidence that both Ig domain 2 and 3 define receptor specificity. J. biol. Chem. 268, 7899–7903 (1993).

    CAS  PubMed  Google Scholar 

  23. Werner, S. et al. Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol. cell. Biol. 12, 82–88 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheon, H.G., LaRochelle, W.J., Bottaro, D.P., Burgess, W.H. & Aaronson, S.A. High-affinity binding sites for related fibroblast growth factor ligands reside within different receptor immunoglobulin-like domains. Proc. natn. Acad. Sci. U.S.A. 91, 989–993 (1994).

    Article  CAS  Google Scholar 

  25. Gray, T.E., Eisenstein, M., Shimon, T., Givol, D. & Yayon, A. Molecular modeling based mutagenesis defines ligand binding and specificity determining regions of fibroblast growth factor receptors. Biochemistry 34, 10325–10333 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Rutland, P. et al. Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nature Genet. 9, 173–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Oldridge, M. et al. Mutations in the third immunoglobulin domain of the fibroblast growth factor receptor-2 gene in Crouzon syndrome. Hum. molec.Genet. 4, 1077–1082 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Jabs, E.W. et al. Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nature Genet. 8, 275–279 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Park, W. et al. Novel FGFR2 mutations in Crouzon and Jackson-Weiss syndromes show allelic heterogeneity and phenotypic variability. Hum. molec. Genet. 4, 1229–1233 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Reardon, W. et al. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nature Genet. 8, 98–103 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Li, X., Park, W., Pyeritz, R.E. & Jabs, E.W. Effect on splicing of a silent FGFR2 mutation in Crouzon syndrome. Nature Genet 9, 232–233 (1995).

    Article  PubMed  Google Scholar 

  32. Dionne, C.A. et al. Cloning and expression of two distinct high affinity receptors cross-reacting with acidic and basic fibroblast growth factors. EMBO J. 9 2685–2692 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reid, H.H., Wilks, A.F. & Bernard, O. Proc. natn. Acad. Sci. U.S.A. 87, 1596–1600 (1990).

    Article  CAS  Google Scholar 

  34. Pasquale, E.B. & Singer, S.J. Proc. natn. Acad. Sci. U.S.A. 86, 5449–5453 (1989).

    Article  CAS  Google Scholar 

  35. Shi, D., Feige, J., Riou, J., DeSimone, D.W. & Boucaut, J. Differential expression and regulation of two distinct fibroblast growth factor receptors during early development of the urodele amphibian Pleurodeles waltl. Development 116, 261–273 (1992).

    CAS  PubMed  Google Scholar 

  36. Musci, T.J., Amaya, E. & Kirschner, M.W. Regulation of the fibroblast growth factor receptor in early Xenopus embryos. Proc. natn. Acad. Sci. U.S.A. 87, 8365–8369 (1990).

    Article  CAS  Google Scholar 

  37. Pasquale, E. A distinctive family of embryonic protein-tyrosine kinase receptors. Proc. natn. Acad. Sci. U.S.A. 87, 5812–5816 (1990).

    Article  CAS  Google Scholar 

  38. Friesel, R. & Dawid, I.B. cDNA cloning and developmental expression of fibroblast growth factor receptors from Xenopus laevis. Molec. cell Biol. 11, 2481–2488 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Keegan, K., Johnson, D., Williams, L. & Hayman, M. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR 3. Proc. natn. Acad. Sci. U.S.A. 88, 1095–1099 (1991).

    Article  CAS  Google Scholar 

  40. Partanen, J. et al. FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. The EMBO J. 10, 1347–1354 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Marcelle, C., Eichmann, A., Halevy, O., Breant, C. & Le Douarin, N. Distinct developmental expression of a new avian fibroblast growth factor receptor. Development 120, 683–694 (1994).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bateman, A., Chothia, C. Outline structures for the extracellular domains of the fibroblast growth factor receptors. Nat Struct Mol Biol 2, 1068–1074 (1995). https://doi.org/10.1038/nsb1295-1068

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1295-1068

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing