Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A 2.2 Å resolution crystal structure of a designed zinc finger protein bound to DNA

Abstract

Considerable recent effort has been devoted to the design and selection of sequence-specific DNA binding proteins based on tandem arrays of Cys2His2 zinc finger domains. While the DNA binding properties of these designed proteins have been studied extensively, the structural basis for site-specific binding has not been examined experimentally. Here we report the crystal structure of a complex between a protein comprised of three consensus-sequence-based zinc finger domains and an oligonucleotide corresponding to a favourable DNA binding site. This structure reveals relatively simple modular interactions and structural adaptations that compensate for differences in contact residue side-chain lengths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, J., McLachlan, A.D. & Klug, A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4, 1609–1614 (1985).

    Article  CAS  Google Scholar 

  2. Rhodes, D. & Klug, A. An underlying repeat in sometranscriptional control sequences corresponding to half a double helical turn of DNA. Cell 46, 123–132 (1986).

    Article  CAS  Google Scholar 

  3. Nardelli, J., Gibson, T.J., Vesque, C. & Charnay, P. Base sequence discrimination by zinc-finger DNA-binding domains. Nature 349, 175 (1991).

    Article  CAS  Google Scholar 

  4. Pavletich, N.P. & Pabo, C.O. Zinc finger -DNA recognition: Crystal structure of a Zif268-DNA complex at 2. 1 Å resolution. Science 252, 809 (1991).

    Article  CAS  Google Scholar 

  5. Lee, M.S., Gippert, G.P., Soman, K.V., Case, D.A. & Wright, P.E. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 245, 635–637 (1988).

    Article  Google Scholar 

  6. Nekludova, L. & Pabo, C.O. Distinctive DNA conformation with enlarged major groove is found in Zn-finger-DNA and other protein-DNA complexes. Proc. Natl. Acad. Sci. USA 91, 6948–6952 (1994).

    Article  CAS  Google Scholar 

  7. Pavletich, N.P. & Pabo, C.O. Crystal structure of a five-finger GLI-DNA complex: New perspectives on zinc fingers. Science 261, 1701–1707 (1993).

    Article  CAS  Google Scholar 

  8. Fairall, L., Schwabe, J.W.R., Chapman, L., Finch, J.T. & Rhodes, D. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature 366, 483–487 (1993).

    Article  CAS  Google Scholar 

  9. Rebar, E.J. & Pabo, C.O. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263, 671–673 (1994).

    Article  CAS  Google Scholar 

  10. Choo, Y. & Klug, A. Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc. Natl. Acad. Sci. USA 91, 11163–11167 (1994).

    Article  CAS  Google Scholar 

  11. Jamieson, A.C., Kim, S.-H. & Wells, J.A. In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry 33, 5689–5695 (1994).

    Article  CAS  Google Scholar 

  12. Wu, H., Yang, W.-P. & Barbas, C.F. III Building zinc fingers by selection: toward a therapeutic application. Proc. Natl. Acad. Sci, USA 92, 344–348 (1995).

    Article  CAS  Google Scholar 

  13. Choo, Y., Sanchez-Garcia, I. & Klug, A. In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 372, 642–645 (1994).

    Article  CAS  Google Scholar 

  14. Nardelli, J., Gibson, T. & Charnay, P. Zinc finger-DNA recognition analysis of base specificity by site-directed mutagenesis. Nucl. Acid. Res. 20, 4137–4144 (1992).

    Article  CAS  Google Scholar 

  15. Thukral, S.K., Morrison, M.L. & Young, E.T. Mutations in the zinc fingers of ADR1 that change the specificity of DNA binding and transactivation. Mol. Cell. Biol. 12, 2784–2792 (1992).

    Article  CAS  Google Scholar 

  16. Desjarlais, J.R. & Berg, J.M. Redesigning the DNA-binding specificity of a zinc finger protein: a data base guided approach. Proteins Struct. Funct Genet. 12, 101–104 (1992); Desjarlais, J.R. & Berg, J.M. Erratum: Redesigning the DNA-binding specificity of a zinc finger protein: a data base guided approach. Proteins Struct. Funct. Genet 13, 272 (1992).

    Article  CAS  Google Scholar 

  17. Desjarlais, J.R. & Berg, J.M. Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc. Natl. Acad. Sci. USA 89, 7345–7349 (1992).

    Article  CAS  Google Scholar 

  18. Krizek, B.A., Amann, B.T., Kilfoil, V.J., Merkle, D.L. & Berg, J.M. A consensus zinc finger peptide: design, high affinity metal binding, pH dependent structure, and a His to Cys sequence variant. J. Am. Chem. Soc. 113, 4518–4523 (1991).

    Article  CAS  Google Scholar 

  19. Desjarlais, J.R. & Berg, J.M. Using a zinc finger consensus framework and specificity rules to design specific DNA binding proteins. Proc. Natl. Acad. Sci. USA 90, 2256–2260 (1993).

    Article  CAS  Google Scholar 

  20. Desjarlais, J.R. & Berg, J.M. Length-encoded multiplex binding site determination: application to zinc finger proteins. Proc. Natl. Acad. Sci. USA 91, 11099–11103 (1994).

    Article  CAS  Google Scholar 

  21. Shi, Y. & Berg, J.M. A direct comparison of the properties of natural and designed zinc finger proteins. Chem. Biol. 2, 83–89 (1995).

    Article  CAS  Google Scholar 

  22. Kim, C.A. & Berg, J.M. Ser is position 2 in the DNA recognition helix of a Cys2His2 zinc finger peptide is not, in general, responsible for base recognition. J. Mol. Biol. 252, 1–5 (1995).

    Article  CAS  Google Scholar 

  23. Pabo, C.O. & Sauer, R.T. Transcription factors: structural families and principles of DNA recognition. Ann. Rev. Biochem. 61, 1053–1095 (1992).

    Article  CAS  Google Scholar 

  24. Shi, Y. & Berg, J.M. DNA unwinding induced by zinc finger protein binding. Biochemistry 35, 3845–3848 (1996).

    Article  CAS  Google Scholar 

  25. Tainer, J.A., Getzoff, E.D., Beem, K.M., Richardson, J.S. & Richardson, D.C. Determination and analysis of the 2 Å structure of copper-zinc superoxide dismutase. J. Mol. Biol. 160, 181–217 (1982).

    Article  CAS  Google Scholar 

  26. Coughlan, P.K. & Lippard, S.J. Magnetic, ESR, electrochemical, and potentiometric titration studies of the imidazolate-bridged dicopper(II) ion in a binucleating macrocycle. Inorganic Chem. 23, 1446–1451 (1984).

    Article  Google Scholar 

  27. Nakaseko, Y., Neuhaus, D., Klug, A. & Rhodes, D. Adjacent zinc-finger motifs in multiple zinc-finger proteins from SWI5 form structurally independent, flexibly linked domains. J. Mol. Biol. 228, 619–636 (1992).

    Article  CAS  Google Scholar 

  28. Brünger, A.T. X-PLOR Version 3.1: A System for X-ray Crystallography and NMR (Yale University Press, New Haven, CT, 1992).

    Google Scholar 

  29. Lavery, R. & Sklenar, H. The definition of generalized helicoidal parameters and an axis of curvature for irregular nucleic acids. J. Biomolec. Struct. Dyn. 6, 63–91 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C., Berg, J. A 2.2 Å resolution crystal structure of a designed zinc finger protein bound to DNA. Nat Struct Mol Biol 3, 940–945 (1996). https://doi.org/10.1038/nsb1196-940

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1196-940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing