Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K

Abstract

Myoglobin's reversible binding of oxygen is a model for studies of protein control of ligand binding and discrimination. Protein relaxation and geminate ligand rebinding subsequent to ligand photodissociation have been studied extensively by a variety of techniques. The ps to ns time scales for these processes are still much shorter than the ms time resolution of X-ray diffraction experiments, but it may be possible to trap these intermediates at low temperatures. We report here an X-ray diffraction investigation of structural changes induced by photolysis of carbonmonoxy myoglobin crystals at 40 K. Our results provide a structural basis for the interpretation of ambient and low temperature spectroscopic observations and molecular dynamics simulations of the ligand photodissociation and binding processes in haem proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Findsen, E.W., Scott, T.W., Chance, M.R., Friedman, J.M. & Ondrias, M.R. Picosecond time-resolved Raman studies of photodissociated carboxymyoglobin. J. Am. chem. Soc. 107, 3355–3357 (1985).

    Article  CAS  Google Scholar 

  2. Dasgupta, S. & Spiro, T.G. Picosecond resonance Raman evidence for unrelaxed haem in the (carbonmonoxy)myoglobin photoproduct. Biochemistry 24, 5295–5297 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Janes, S.M., Dalickas, G.A., Eaton, W.A. & Hochstrasser, R.M. Picosecond transient absorption study of photodissociated carboxy hemoglobin and myoglobin. Biophys. J. 54, 545–549 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Henry, E.R., Sommer, J.H., Hofrichter, J. & Eaton, W.A. Geminate recombination of carbon monoxide to myoglobin. J. molec. Biol. 166, 443–451 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Tian, W.-D., Sage, J.T., Šrajer, V. & Champion, P.M. Relaxation dynamics of myoglobin in solution. Phys. Rev. Letts 68, 408–411 (1992).

    Article  CAS  Google Scholar 

  6. Austin, R.H., Beeson, K.W., Eisentein, L., Frauenfelder, H., & Gunsalus, I.C. Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. Steinbach, P.J. et al. Ligand binding to haem proteins: connection between dynamics and function. Biochemistry 30, 3988–4001 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Ansari, A. et al. Protein states and protein quakes. Proc. natn. Acad. Sci. U.S.A. 82, 5000–5004 (1985).

    Article  CAS  Google Scholar 

  9. Nienhaus, G.U., Mourant, J.R. & Frauenfelder, H. Spectroscopic evidence for conformational relaxation in myoglobin. Proc. natn. Acad. Sci. U.S.A. 89, 2902–2906 (1992).

    Article  CAS  Google Scholar 

  10. Parak, F. et al. Low temperature X-ray investigation of structural distributions in myoglobin. Eur. biophys. J. 15, 237–249 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Blundell, T.L. & Johnson, L.N. Protein Crystallography, Academic Press, New York, 1976.

    Google Scholar 

  12. Henderson, R. & Moffat, J.K. The difference Fourier technique in protein crystallography: errors and their treatment. Acta Cryst. B27, 1414–1420 (1971).

    Article  Google Scholar 

  13. Kuriyan, J., Wilz, S., Karplus, M. & Petsko, G.A. X-ray structure and refinement of carbon-monoxy (Fell)-myoglobin at 1.5 Å resolution. J. molec. Biol. 192, 133–154 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Takano, T. Structure of myoglobin refined at 2.0 resolution. II. Structure of deoxymyoglobin from sperm whale. J. molec. Biol. 110, 569–584 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Chance, B., Fischetti R. & Powers, L. Structure and kinetics of the photoproduct of carboxymyoglobin at low temperatures: an X-ray absorption study. Biochemistry 22, 3820–3829 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Powers, L. et al. Kinetic, structural, and spectroscopic identification of geminate states of myoglobin: a ligand binding site on the reaction pathway. Biochemistry 26, 4785–4796 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Teng, T.-Y., & Huang, H.W. & Olah, G.A. 5 K extended X-ray absorption fine structure and 40 K 10-s resolved extended X-ray absorption fine structure studies of photolyzed carboxymyoglobin. Biochemistry 26, 8066–8072 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Rousseau, D.L. & Argade, P.V. Metastable photoproducts from carbon monoxide myoglobin. Proc. natn. Acad. Sci. U.S.A. 83, 1310–1314 (1986).

    Article  CAS  Google Scholar 

  19. Sassaroli, M., Dasgupta, S. & Rousseau, D.L. Cryogenic stabilization of myoglobin photoproducts. J. biol. Chem. 261, 13704–13714 (1986).

    CAS  PubMed  Google Scholar 

  20. Fiamingo, F.G. & Alben, J.O. Structures of photolyzed carboxymyoglobin. Biochemistry 24, 7964–7970 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Campbell, B.R., Chance, M.R. & Friedman, J.M. Linkage of functional and structural heterogeneity in proteins: dynamic hole burning in carboxymyoglobin. Science 238, 373–376 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Šrajer, V. & Champion, P.M. Investigation of optical line shapes and kinetic hole burning in myoglobin. Biochemistry 30, 7390–7402 (1991).

    Article  PubMed  Google Scholar 

  23. Perutz, M.F., Hasnain, S., Duke, P.J., Sessler, J.L. & Hahn, J.E. Stereochemistry of iron in deoxyhaemoglobin. Nature 295, 535–538 (1982)

    Article  CAS  PubMed  Google Scholar 

  24. Sassaroli, M. & Rousseau, D.L. Simulation of carboxymyoglobin photodissociation. J. biol. Chem. 261, 16292–16294 (1986).

    CAS  PubMed  Google Scholar 

  25. Elber, R. & Karplus, M. Enhanced sampling in molecular dynamics: use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. J. Am. chem. Soc. 112, 9161–9175 (1990).

    Article  CAS  Google Scholar 

  26. Alben, J.O. et al. Isotope effect in molecular tunneling. Phys. Rev. Letts 44, 1157–1160 (1980).

    Article  CAS  Google Scholar 

  27. Henry, E.R., Eaton, W.A. & Hochstrasser, R.M. Molecular dynamics simulations of cooling in laser-excited haem proteins. Proc. natn. Acad. Sci. U.S.A. 83, 8982–8986 (1986).

    Article  CAS  Google Scholar 

  28. Lim, M., Jackson, T.A. & Anfinrud, P.A. Nonexponential protein relaxation: Dynamics of conformational change in myoglobin. Proc. natn. Acad. Sci. U.S.A. 90, 5801–5804 (1993).

    Article  CAS  Google Scholar 

  29. Franzen, S., Lambry, J.C., Bonn, B., Poyart, C. & Martin, J.L. Direct evidence for the role of haem doming as the primary event in the cooperative transition of haemoglobin. Nature struct. Biol. 1, 230–233 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Ansari, A., Jones, C.M., Henry, E.R., Hofrichter, J. & Eaton, W.A. Conformational relaxation and ligand binding in myoglobin. Biochemistry 33, 5128–5145 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Šrajer, V., Reinisch, L. & Champion, P.M. Investigation of laser-induced long-lived states of photolyzed MbCO. Biochemistry 30, 4886–4895 (1991).

    Article  PubMed  Google Scholar 

  32. Kendrew, J.C. & Parrish, R.G. The crystal structure of myoglobin. III. Sperm-whale myoglobin. Proc. Royal Soc. A (London) 238, 305–324 (1956).

    Google Scholar 

  33. Teng, T.-Y. Mounting of crystals for macromolecular crystallography in a free-standing thin film. J. Appl. Cryst. 23, 387–391 (1990).

    Article  CAS  Google Scholar 

  34. Teng, T.-Y., Schildkamp, W., Dolmer, P. & Moffat, K. Two open flow cryostats for macromolecular crystallography. J. Appl. Cryst. 27, 133–139 (1994).

    Article  CAS  Google Scholar 

  35. Chen, Y., Šrajer, V., Ng, K., LeGrand, A. & Moffat, K. Optical monitoring of protein crystals in time-resolved X-ray experiments: microspectrophotometer design and performance. Rev. Sci. Instr. 65, 1506–1511 (1994).

    Article  CAS  Google Scholar 

  36. Otwinowski, Z. DENZO, A Program for Automatic Evaluation of Film Densities, Yale University, New Haven.

  37. The SERC (UK) Collaborative Computing Project ♯4. A suite of Programs for Protein Crystallography, Daresbury Laboratory, Warrington, (1979).

  38. Phillips, S.E.V. Structure and refinement of oxymyoglobin at 1.6 Å resolution. J. molec. Biol. 142, 531–554 (1980).

    Article  CAS  PubMed  Google Scholar 

  39. Brünger, A.T., Kuriyan, J. Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  PubMed  Google Scholar 

  40. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta cryst. A47, 392–400 (1991)

    Article  CAS  Google Scholar 

  41. McRee, D. A visual protein Crystallographic software system for X11/Xview. J. molec. Graphics 10, 44–47 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, TY., Šrajer, V. & Moffat, K. Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K. Nat Struct Mol Biol 1, 701–705 (1994). https://doi.org/10.1038/nsb1094-701

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1094-701

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing