Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the Escherichia coli dUTPase in complex with a substrate analogue (dUDP)

Abstract

We have determined the structure of the homotrimeric dUTPase from Escherichia coli, complexed with an inhibitor and substrate analogue, dUDP. Three molecules of dUDP are found symmetrically bound per trimer, each in a shallow cleft between adjacent subunits, interacting with evolutionary conserved residues. The interactions of the uracil ring and the deoxypentose with the protein are consistent with the high specificity of the enzyme with respect to these groups. The positions of the two phosphate groups and adjacent water molecules are discussed in relation to the mechanism and kinetics of catalysis. The role that dUTPase plays in DNA metabolism makes the enzyme a potential target for chemotherapeutic drugs: the results presented here will aid in the design and development of inhibitory compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bertani, L.E., Häggmark, A. & Reichhard, P.J. Synthesis of pyrimidine deoxyribonucleoside diphosphates with enzymes from Escherichia coil . J. Biol. Chem. 236, 67–68 (1961).

    Google Scholar 

  2. Shlomai, J. & Kornberg, A. Deoxyuridine triphosphatase of Escherichia coil . J. Biol. Chem. 253, 3305–3312 (1978).

    CAS  PubMed  Google Scholar 

  3. Climie, S. et al. Expression of trimeric human dUTP pyrophosphatase in Escherichia coil and purification of the enzyme. Protein Expr. Purif. 5, 252–258 (1994).

    Article  CAS  Google Scholar 

  4. Björnberg, O. et al. dUTPase from herpes simplex virus type 1; purification from infected green monkey kidney (Vero) cells and from an overproducing Escherichia coil strain. Protein Expr. Purif. 4, 149–159 (1993).

    Article  Google Scholar 

  5. Bergman, A.-C., Björnberg, O., Nord, J., Nyman, P.O. & Rosengren, A.M. The protein p30, encoded at the gag-pro junction of mouse mammary tumor virus, is a dUTPase fused with a nucleocapsid protein. Virology 204, 420–424 (1994).

    Article  CAS  Google Scholar 

  6. McIntosh, E.M., Ager, D.D., Gadsden, M.H. & Haynes, R.H. Human dUTP pyrophosphatase: cDNA sequence and potential biological importance of the enzyme. Proc. Natl. Acad. Sci. USA 89, 8020–8024 (1992).

    Article  CAS  Google Scholar 

  7. Tye, B.-K., Nyman, P.O., Lehman, I.R., Hochhauser, S. & Weiss, B. Transient accumulation of Okazaki fragments as a result of uracil incorporation into nascent DNA. Proc. Natl. Acad. Sci. USA 74, 154–157 (1977).

    Article  CAS  Google Scholar 

  8. EI-Hajj, H.H., Zhang, H. & Weiss, B. Lethality of a dut (deoxyuridine triphosphatase) mutation in Escherichia coil . J. Bacteriol. 170, 1069–1075 (1988).

    Article  Google Scholar 

  9. Gadsden, M.H., Mclntosh, E.M., Game, J.C., Wilson, P.J. & Haynes, R.H. dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae . EMBO J. 12, 4425–4431 (1993).

    Article  CAS  Google Scholar 

  10. Hokari, S., Koyama, I., Shioda, K. & Sakagishi, Y. Deoxyuridine triphosphatase in human hepatoma. Int. J. Biochem. 26, 487–490 (1994).

    Article  CAS  Google Scholar 

  11. Cedergren-Zeppezauer, E.S., Larsson, G., Nyman, P.O., Dauter, Z. & Wilson, K.S. Crystal structure of a dUTPase. Nature 355, 740–743 (1992).

    Article  CAS  Google Scholar 

  12. Cedergren-Zeppezauer, E.S. et al. Crystallization and preliminary investigation of single crystals of deoxyuridine triphosphate nucleotidohydrolase from Escherichia coil . PROTEINS: Struct, Funct. and Genet. 4, 71–75 (1988).

    Article  CAS  Google Scholar 

  13. Saenger, W. Principles of Nucleic Acid Structure, Springer-Verlag, New York (1988).

    Google Scholar 

  14. Hardy, L.W. & Nalivaika, E. Asn177 in Escherichia coli thymidylate synthase is a major determinant of pyrimidine specificity. Proc. Natl. Acad. Sci. USA 89, 9725–9729 (1992).

    Article  CAS  Google Scholar 

  15. Herzberg, O. & Moult, J. Analysis of the steric strain in the polypeptide backbone of protein molecules. PROTEINS: Struct, Funct. and Genet. 11, 223–229 (1991).

    Article  CAS  Google Scholar 

  16. McGeoch, D.J. Protein sequence comparisons show that the ‘pseudoproteases’ encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family. Nucleic Acids Res. 18, 4105–4110 (1990).

    Article  CAS  Google Scholar 

  17. Möller, W. & Amons, R. Phosphate-binding sequences in nucleotide-binding proteins. FEBS Lett. 186, 1–7 (1985).

    Article  Google Scholar 

  18. Bossemeyer, D. The glycine-rich sequence of protein kinases: a multifunctional element. Trends Biochem. Sci. 19, 201–205 (1994).

    Article  CAS  Google Scholar 

  19. Hoffmann, I., Widström, J., Zeppezauer, M. & Nyman, P.O. Overproduction and large-scale preparation of deoxyuridine triphosphate nucleotidohydrolase from Escherichia coli . Eur. J. Biochem. 164, 45–51 (1987).

    Article  CAS  Google Scholar 

  20. Kabsch, W. Evaluation of single crystal X-ray diffraction data from a position sensitve detector. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  21. CCP4X. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  22. Brünger, A.T. X-PLOR Version 3.1: A system for X-ray Crystallography and NMR., Yale University Press, New Haven, CT, USA (1992).

    Google Scholar 

  23. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1995).

    Google Scholar 

  24. Saqi, M.A.S. & Sayle, R. Pdb Motif - A tool for the automatic identification and display of motifs in protein structures. Comput. Appl. Biosci. 10, 545–546 (1994).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, G., Svensson, L. & Nyman, P. Crystal structure of the Escherichia coli dUTPase in complex with a substrate analogue (dUDP). Nat Struct Mol Biol 3, 532–538 (1996). https://doi.org/10.1038/nsb0696-532

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0696-532

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing