Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Twenty years of bacterial genome sequencing

Abstract

Twenty years ago, the publication of the first bacterial genome sequence, from Haemophilus influenzae, shook the world of bacteriology. In this Timeline, we review the first two decades of bacterial genome sequencing, which have been marked by three revolutions: whole-genome shotgun sequencing, high-throughput sequencing and single-molecule long-read sequencing. We summarize the social history of sequencing and its impact on our understanding of the biology, diversity and evolution of bacteria, while also highlighting spin-offs and translational impact in the clinic. We look forward to a 'sequencing singularity', where sequencing becomes the method of choice for as-yet unthinkable applications in bacteriology and beyond.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Milestones in bacterial genome sequencing.
Figure 2: Bacterial genomics: the first two decades.

References

  1. Burland, V., Plunkett, G., Daniels, D. L. & Blattner, F. R. DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics 16, 551–561 (1993).

    CAS  PubMed  Google Scholar 

  2. Glaser, P. et al. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325 degrees to 333 degrees. Mol. Microbiol. 10, 371–384 (1993).

    CAS  PubMed  Google Scholar 

  3. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    CAS  PubMed  Google Scholar 

  4. Parkhill, J. In defense of complete genomes. Nat. Biotechnol. 18, 493–494 (2000).

    CAS  PubMed  Google Scholar 

  5. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Parkhill, J. et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527 (2001).

    CAS  PubMed  Google Scholar 

  7. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997).

    CAS  PubMed  Google Scholar 

  8. Kunst, F. et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249–256 (1997).

    CAS  PubMed  Google Scholar 

  9. Fraser, C. M. et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375–388 (1998).

    CAS  PubMed  Google Scholar 

  10. Eiglmeier, K. et al. The decaying genome of Mycobacterium leprae. Lepr Rev. 72, 387–398 (2001).

    CAS  PubMed  Google Scholar 

  11. Bentley, S. D. et al. Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei. Lancet 361, 637–644 (2003).

    CAS  PubMed  Google Scholar 

  12. White, O. et al. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571–1577 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Renesto, P. et al. Genome-based design of a cell-free culture medium for Tropheryma whipplei. Lancet 362, 447–449 (2003).

    PubMed  Google Scholar 

  14. Parkhill, J. et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668 (2000).

    CAS  PubMed  Google Scholar 

  15. Patrick, S. et al. Multiple inverted DNA repeats of Bacteroides fragilis that control polysaccharide antigenic variation are similar to the hin region inverted repeats of Salmonella typhimurium. Microbiology 149, 915–924 (2003).

    CAS  PubMed  Google Scholar 

  16. Himmelreich, R. et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24, 4420–4449 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Alm, R. A. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180 (1999).

    PubMed  Google Scholar 

  18. Read, T. D. et al. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 28, 1397–1406 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fleischmann, R. D. et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184, 5479–5490 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, S. L., Hessel, A. & Sanderson, K. E. Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. Proc. Natl Acad. Sci. USA 90, 6874–6878 (1993).

    CAS  PubMed  Google Scholar 

  21. Hayashi, T. et al. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8, 11–22 (2001).

    CAS  PubMed  Google Scholar 

  22. Welch, R. A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 99, 17020–17024 (2002).

    CAS  PubMed  Google Scholar 

  23. Nelson, K. E. et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).

    CAS  PubMed  Google Scholar 

  24. Achtman, M. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu. Rev. Microbiol. 62, 53–70 (2008).

    CAS  PubMed  Google Scholar 

  25. Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).

    CAS  PubMed  Google Scholar 

  26. Darby, A. C., Cho, N. H., Fuxelius, H. H., Westberg, J. & Andersson, S. G. Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet. 23, 511–520 (2007).

    CAS  PubMed  Google Scholar 

  27. Vigil-Stenman, T., Larsson, J., Nylander, J. A. & Bergman, B. Local hopping mobile DNA implicated in pseudogene formation and reductive evolution in an obligate cyanobacteria-plant symbiosis. BMC Genomics 16, 193 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Maurelli, A. T. Black holes, antivirulence genes, and gene inactivation in the evolution of bacterial pathogens. FEMS Microbiol. Lett. 267, 1–8 (2007).

    CAS  PubMed  Google Scholar 

  29. Ren, C. P. et al. The ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition. J. Bacteriol. 186, 3547–3560 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ren, C. P., Beatson, S. A., Parkhill, J. & Pallen, M. J. The Flag-2 locus, an ancestral gene cluster, is potentially associated with a novel flagellar system from Escherichia coli. J. Bacteriol. 187, 1430–1440 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pallen, M. J., Lam, A. C., Antonio, M. & Dunbar, K. An embarrassment of sortases — a richness of substrates? Trends Microbiol. 9, 97–102 (2001).

    CAS  PubMed  Google Scholar 

  32. Pallen, M. J. The ESAT-6/WXG100 superfamily — and a new Gram-positive secretion system? Trends Microbiol. 10, 209–212 (2002).

    CAS  PubMed  Google Scholar 

  33. Collmer, A., Lindeberg, M., Petnicki-Ocwieja, T., Schneider, D. J. & Alfano, J. R. Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends Microbiol. 10, 462–469 (2002).

    CAS  PubMed  Google Scholar 

  34. Spratt, B. G. & Maiden, M. C. Bacterial population genetics, evolution and epidemiology. Phil. Trans. R. Soc. Lond. B 354, 701–710 (1999).

    CAS  Google Scholar 

  35. Medini, D., Donati, C., Tettelin, H., Masignani, V. & Rappuoli, R. The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589–594 (2005).

    CAS  PubMed  Google Scholar 

  36. Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc. Natl Acad. Sci. USA 102, 13950–13955 (2005).

    CAS  PubMed  Google Scholar 

  37. Tobe, T. et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc. Natl Acad. Sci. USA 103, 14941–14946 (2006).

    CAS  PubMed  Google Scholar 

  38. Brussow, H., Canchaya, C. & Hardt, W. D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602 (2004).

    PubMed  PubMed Central  Google Scholar 

  39. Holden, M., Crossman, L., Cerdeno-Tarraga, A. & Parkhill, J. Pathogenomics of non-pathogens. Nat. Rev. Microbiol. 2, 91 (2004).

    CAS  PubMed  Google Scholar 

  40. Pallen, M. J. & Wren, B. W. Bacterial pathogenomics. Nature 449, 835–842 (2007).

    CAS  PubMed  Google Scholar 

  41. Romero, C. M. et al. Genome sequence alterations detected upon passage of Burkholderia mallei ATCC 23344 in culture and in mammalian hosts. BMC Genomics 7, 228 (2006).

    PubMed  PubMed Central  Google Scholar 

  42. Pizza, M. et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820 (2000).

    CAS  PubMed  Google Scholar 

  43. Vernikos, G. & Medini, D. Bexsero® chronicle. Pathog. Glob. Health 108, 305–316 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Rasko, D. A. et al. Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation. Proc. Natl Acad. Sci. USA 108, 5027–5032 (2011).

    CAS  PubMed  Google Scholar 

  45. Read, T. D. et al. Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296, 2028–2033 (2002).

    CAS  PubMed  Google Scholar 

  46. Cummings, C. A. & Relman, D. A. Using DNA microarrays to study host–microbe interactions. Emerg. Infect. Dis. 6, 513–525 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Harrington, C. A., Rosenow, C. & Retief, J. Monitoring gene expression using DNA microarrays. Curr. Opin. Microbiol. 3, 285–291 (2000).

    CAS  PubMed  Google Scholar 

  48. Dorrell, N. et al. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 11, 1706–1715 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schmid, M. B. Structural proteomics: the potential of high-throughput structure determination. Trends Microbiol. 10, S27–S31 (2002).

    CAS  PubMed  Google Scholar 

  50. Matte, A., Jia, Z., Sunita, S., Sivaraman, J. & Cygler, M. Insights into the biology of Escherichia coli through structural proteomics. J. Struct. Funct. Genomics 8, 45–55 (2007).

    CAS  PubMed  Google Scholar 

  51. Lipton, M. S. et al. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl Acad. Sci. USA 99, 11049–11054 (2002).

    CAS  PubMed  Google Scholar 

  52. Brown, J. S. et al. Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol. Microbiol. 36, 1371–1380 (2000).

    CAS  PubMed  Google Scholar 

  53. Heidelberg, J. F. et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20, 1118–1123 (2002).

    CAS  PubMed  Google Scholar 

  54. Methe, B. A. et al. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302, 1967–1969 (2003).

    CAS  PubMed  Google Scholar 

  55. Beja, O. et al. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415, 630–633 (2002).

    CAS  PubMed  Google Scholar 

  56. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    CAS  PubMed  Google Scholar 

  57. Raoult, D. et al. The 1.2-megabase genome sequence of Mimivirus. Science 306, 1344–1350 (2004).

    CAS  PubMed  Google Scholar 

  58. Wu, D. et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462, 1056–1060 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Metzker, M. L. Emerging technologies in DNA sequencing. Genome Res. 15, 1767–1776 (2005).

    CAS  PubMed  Google Scholar 

  60. Metzker, M. L. Sequencing technologies - the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    CAS  PubMed  Google Scholar 

  61. Loman, N. J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30, 434–439 (2012).

    CAS  PubMed  Google Scholar 

  62. Holt, K. E. et al. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat. Genet. 40, 987–993 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chin, C. S. et al. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364, 33–42 (2011).

    CAS  PubMed  Google Scholar 

  64. Truman, R. W. et al. Probable zoonotic leprosy in the southern United States. N. Engl. J. Med. 364, 1626–1633 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Harris, S. R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Azarian, T. et al. Whole-genome sequencing for outbreak investigations of methicillin-resistant Staphylococcus aureus in the neonatal intensive care unit: time for routine practice? Infect. Control Hosp. Epidemiol. 36, 777–785 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Lewis, T. et al. High-throughput whole-genome sequencing to dissect the epidemiology of Acinetobacter baumannii isolates from a hospital outbreak. J. Hosp. Infect. 75, 37–41 (2010).

    CAS  PubMed  Google Scholar 

  68. Koser, C. U. et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N. Engl. J. Med. 366, 2267–2275 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Eyre, D. W. et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N. Engl. J. Med. 369, 1195–1205 (2013).

    CAS  PubMed  Google Scholar 

  70. Snitkin, E. S. et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci. Transl Med. 4, 148ra116 (2012).

    PubMed  PubMed Central  Google Scholar 

  71. Gardy, J. L. et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N. Engl. J. Med. 364, 730–739 (2011).

    CAS  PubMed  Google Scholar 

  72. Grad, Y. H. et al. Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study. Lancet Infect. Dis. 14, 220–226 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Paterson, G. K. et al. Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission. Nat. Commun. 6, 6560 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chewapreecha, C. et al. Dense genomic sampling identifies highways of pneumococcal recombination. Nat. Genet. 46, 305–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Loman, N. J. et al. Clonal expansion within pneumococcal serotype 6C after use of seven-valent vaccine. PLoS ONE 8, e64731 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hornsey, M. et al. Whole-genome comparison of two Acinetobacter baumannii isolates from a single patient, where resistance developed during tigecycline therapy. J. Antimicrob. Chemother. 66, 1499–1503 (2011).

    CAS  PubMed  Google Scholar 

  77. Rohde, H. et al. Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N. Engl. J. Med. 365, 718–724 (2011).

    CAS  PubMed  Google Scholar 

  78. Long, S. W. et al. A genomic day in the life of a clinical microbiology laboratory. J. Clin. Microbiol. 51, 1272–1277 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Parkhill, J. What has high-throughput sequencing ever done for us? Nat. Rev. Microbiol. 11, 664–665 (2013).

    CAS  PubMed  Google Scholar 

  80. Gordon, N. C. et al. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J. Clin. Microbiol. 52, 1182–1191 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005).

    CAS  PubMed  Google Scholar 

  82. Abrahams, K. A. et al. Identification of novel imidazo[1,2-a]pyridine inhibitors targeting M. tuberculosis QcrB. PLoS ONE 7, e52951 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Remuinan, M. J. et al. Tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide and N-benzyl-6′,7′-dihydrospiro[piperidine-4,4′-thieno[3,2-c]pyran] analogues with bactericidal efficacy against Mycobacterium tuberculosis targeting MmpL3. PLoS ONE 8, e60933 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Goodman, A. L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. van Opijnen, T., Bodi, K. L. & Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods 6, 767–772 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Langridge, G. C. et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res. 19, 2308–2316 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Galagan, J., Lyubetskaya, A. & Gomes, A. ChIP-Seq and the complexity of bacterial transcriptional regulation. Curr. Top. Microbiol. Immunol. 363, 43–68 (2013).

    CAS  PubMed  Google Scholar 

  88. Umbarger, M. A. et al. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell 44, 252–264 (2011).

    CAS  PubMed  Google Scholar 

  89. Beitel, C. W. et al. Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. PeerJ 2, e415 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Sheppard, S. K. et al. Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc. Natl Acad. Sci. USA 110, 11923–11927 (2013).

    CAS  PubMed  Google Scholar 

  91. Hanage, W. P. Microbiology: microbiome science needs a healthy dose of scepticism. Nature 512, 247–248 (2014).

    CAS  PubMed  Google Scholar 

  92. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008).

    PubMed  PubMed Central  Google Scholar 

  93. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sergeant, M. J. et al. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS ONE 9, e91941 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Loman, N. J. et al. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA 309, 1502–1510 (2013).

    CAS  PubMed  Google Scholar 

  96. Fischer, N. et al. Rapid metagenomic diagnostics for suspected outbreak of severe pneumonia. Emerg. Infect. Dis. 20, 1072–1075 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. Wilson, M. R. et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N. Engl. J. Med. 370, 2408–2417 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. Bos, K. I. et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478, 506–510 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kay, G. L. et al. Recovery of a medieval Brucella melitensis genome using shotgun metagenomics. MBio 5, e01337–e01314 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Kay, G. L. et al. Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nat. Commun. 6, 6717 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. Walker, A. & Parkhill, J. Single-cell genomics. Nat. Rev. Microbiol. 6, 176–177 (2008).

    CAS  PubMed  Google Scholar 

  102. Lasken, R. S. & McLean, J. S. Recent advances in genomic DNA sequencing of microbial species from single cells. Nat. Rev. Genet. 15, 577–584 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).

    CAS  PubMed  Google Scholar 

  104. Podar, M. et al. Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl. Environ. Microbiol. 73, 3205–3214 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. McLean, J. S. et al. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc. Natl Acad. Sci. USA 110, E2390–E2399 (2013).

    CAS  PubMed  Google Scholar 

  106. Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).

    CAS  PubMed  Google Scholar 

  107. Ramasamy, D. et al. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int. J. Syst. Evol. Microbiol. 64, 384–391 (2014).

    PubMed  Google Scholar 

  108. Chan, J. Z., Halachev, M. R., Loman, N. J., Constantinidou, C. & Pallen, M. J. Defining bacterial species in the genomic era: insights from the genus Acinetobacter. BMC Microbiol. 12, 302 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl Acad. Sci. USA 102, 2567–2572 (2005).

    CAS  PubMed  Google Scholar 

  110. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    CAS  PubMed  Google Scholar 

  111. Bashir, A. et al. A hybrid approach for the automated finishing of bacterial genomes. Nat. Biotechnol. 30, 701–707 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    CAS  PubMed  Google Scholar 

  113. Wellcome Trust Sanger Institute. Public Health England reference collections. Wellcome Trust Sanger Institute [online], (2015).

  114. Stoesser, N. et al. Dynamics of MDR Enterobacter cloacae outbreaks in a neonatal unit in Nepal: insights using wider sampling frames and next-generation sequencing. J. Antimicrob. Chemother. 70, 1008–1015 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Korlach, J. & Turner, S. W. Going beyond five bases in DNA sequencing. Curr. Opin. Struct. Biol. 22, 251–261 (2012).

    CAS  PubMed  Google Scholar 

  116. Madoui, M. A. et al. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics 16, 327 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Karlsson, E., Larkeryd, A., Sjodin, A., Forsman, M. & Stenberg, P. Scaffolding of a bacterial genome using MinION nanopore sequencing. Sci. Rep. 5, 11996 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Quick, J., Quinlan, A. R. & Loman, N. J. A reference bacterial genome dataset generated on the MinION portable single-molecule nanopore sequencer. Gigascience 3, 22 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Judge, K., Harris, S. R., Reuter, S., Parkhill, J. & Peacock, S. J. Early insights into the potential of the Oxford Nanopore MinION for the detection of antimicrobial resistance genes. J. Antimicrob. Chemother. 70, 2775–2778 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Quick, J. et al. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 16, 114 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Check Hayden, E. Pint-sized DNA sequencer impresses first users. Nature 521, 15–16 (2015).

    CAS  PubMed  Google Scholar 

  122. Loman, N. J. & Watson, M. Successful test launch for nanopore sequencing. Nat. Methods 12, 303–304 (2015).

    CAS  PubMed  Google Scholar 

  123. Hall, N. After the gold rush. Genome Biol. 14, 115 (2013).

    PubMed  PubMed Central  Google Scholar 

  124. Goldman, N. et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494, 77–80 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lo, Y. M. & Chiu, R. W. Plasma nucleic acid analysis by massively parallel sequencing: pathological insights and diagnostic implications. J. Pathol. 225, 318–323 (2011).

    CAS  PubMed  Google Scholar 

  126. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    CAS  PubMed  Google Scholar 

  127. Staden, R. A strategy of DNA sequencing employing computer programs. Nucleic Acids Res. 6, 2601–2610 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Rieder, M. J., Taylor, S. L., Tobe, V. O. & Nickerson, D. A. Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome. Nucleic Acids Res. 26, 967–973 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Delcher, A. L., Harmon, D., Kasif, S., White, O. & Salzberg, S. L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Rutherford, K. et al. Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945 (2000).

    CAS  PubMed  Google Scholar 

  131. Miller, J. R., Koren, S. & Sutton, G. Assembly algorithms for next-generation sequencing data. Genomics 95, 315–327 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Eisenstein, M. Oxford Nanopore announcement sets sequencing sector abuzz. Nat. Biotechnol. 30, 295–296 (2012).

    CAS  PubMed  Google Scholar 

  133. Loman, N. J., Quick, J & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 12, 733–735 (2015).

    CAS  PubMed  Google Scholar 

  134. Drake, N. How to catch a cloud. Nature 522, 115–116 (2015).

    CAS  PubMed  Google Scholar 

  135. Pallen, M. J. Microbial genomes. Mol. Microbiol. 32, 907–912 (1999).

    CAS  PubMed  Google Scholar 

  136. Chaudhuri, R. R. et al. Genome sequencing shows that European isolates of Francisella tularensis subspecies tularensis are almost identical to US laboratory strain Schu S4. PLoS ONE 2, e352 (2007).

    PubMed  PubMed Central  Google Scholar 

  137. Loman, N. J. et al. High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat. Rev. Microbiol. 10, 599–606 (2012).

    CAS  PubMed  Google Scholar 

  138. Nasser, W. et al. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences. Proc. Natl Acad. Sci. USA 111, E1768–E1776 (2014).

    CAS  PubMed  Google Scholar 

  139. Wacker, M. et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793 (2002).

    CAS  PubMed  Google Scholar 

  140. Cuccui, J. et al. Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis. Open Biol. 3, 130002 (2013).

    PubMed  PubMed Central  Google Scholar 

  141. Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7 (2006).

    PubMed  PubMed Central  Google Scholar 

  142. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Pennisi, E. The CRISPR craze. Science 341, 833–836 (2013).

    CAS  PubMed  Google Scholar 

  144. Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014).

    CAS  PubMed  Google Scholar 

  145. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    CAS  PubMed  Google Scholar 

  146. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    CAS  PubMed  Google Scholar 

  147. Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

    CAS  PubMed  Google Scholar 

  148. Kuroda, M. et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240 (2001).

    CAS  PubMed  Google Scholar 

  149. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Baker, S. et al. High-throughput genotyping of Salmonella enterica serovar Typhi allowing geographical assignment of haplotypes and pathotypes within an urban District of Jakarta, Indonesia. J. Clin. Microbiol. 46, 1741–1746 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.J.L. and M.J.P. are supported by the Medical Research Council (MRC)-funded Cloud Infrastructure for Microbial Bioinformatics (CLIMB) project (reference number MR/L015080/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Pallen.

Ethics declarations

Competing interests

Loman and Pallen have spoken at meetings sponsored by Illumina and Oxford Nanopore; both have signed up to Oxford Nanopore's early access programme. Both have co-authored a paper with Illumina staff.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loman, N., Pallen, M. Twenty years of bacterial genome sequencing. Nat Rev Microbiol 13, 787–794 (2015). https://doi.org/10.1038/nrmicro3565

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3565

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing