Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The nineteenth century roots of 'everything is everywhere'

Abstract

The identification of geographical patterns in microbial distributions has begun to challenge purely ecological explanations of biogeography and the underlying principle of “everything is everywhere: but the environment selects”. How did 'everything is everywhere' arise out of nineteenth century microbiology, and from Beijerinck's experimental and theoretical work in particular? What is the relationship of this principle to the plant and animal biogeography that flourished throughout this formative period of microbiology's history? Understanding Beijerinck's legacy for twentieth century microbial biogeography reveals issues that are still pertinent to contemporary discussions of microbial biodiversity and biogeography.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pages 84 and 85 from number 17 of the laboratory journals of M. W. Beijerinck.

References

  1. Lomolino, M. V., Riddle, B. R. & Brown, J. H. Biogeography 3rd edn (Sinauer, Sunderland, Massachusetts, 2006).

    Google Scholar 

  2. Richardson, R. A. Biogeography and the genesis of Darwin's ideas on transmutation. J. Hist. Biol. 14, 1–41 (1981).

    Article  Google Scholar 

  3. Browne, J. The Secular Ark: Studies in the History of Biogeography (Yale University Press, New Haven, 1983).

    Book  Google Scholar 

  4. Mayr, E. Darwin's principle of divergence. J. Hist. Biol. 25, 343–359 (1992).

    Article  Google Scholar 

  5. Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nature Rev. Microbiol. 4, 102–112 (2006).

    Article  CAS  Google Scholar 

  6. Larson, J. Not without a plan: geography and natural history in the late eighteenth century. J. Hist. Biol. 19, 447–488 (1986).

    Article  Google Scholar 

  7. Buffon, de Comte . Natural History, General and Particular (Strahan and Cadell, London, 1761).

    Google Scholar 

  8. Lyell, C. Principles of Geology 11th edn Vol. 2 (John Murray, London, 1832).

    Google Scholar 

  9. Bueno-Hernández, A. A. & Llorente-Bousquets, J. E. The other face of Lyell: historical biogeography in his Principles of Geology. J. Biogeogr. 33, 549–559 (2006).

    Article  Google Scholar 

  10. Hooker, J. D. The Botany of the Antarctic voyage of H. M. Discovery Ships Erebus and Terror in the Years 1839–1843. Part 2, Flora Novae-Zelandiae. (Reeve, London, 1853).

    Google Scholar 

  11. Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, London, 1859).

    Book  Google Scholar 

  12. Wallace, A. R. The Geographical Distribution of Animals Vol. 2 Ch. 1 (Macmillan, London, 1876).

    Google Scholar 

  13. Fichman, M. Wallace: Zoogeography and the problem of land bridges. J. Hist. Biol. 10, 45–63 (1977).

    Article  Google Scholar 

  14. Darwin, C. The Life and Letters of Charles Darwin Vol. 1 (ed. F. Darwin) (Appelton & Co, New York, 1905).

    Google Scholar 

  15. Merz, J. T. A History of European Thought in the Nineteenth Century Vol. 2 337–344 (William Blackwood & Sons, Edinburgh, 1912).

    Google Scholar 

  16. Hodge, M. J. S. in Probability Since 1800: Interdisciplinary Studies of Scientific Development (eds Heidelberger, M., Krüger, L. & Rheinwald, R.) 287–329 (University of Bielefeld, Bielefeld, 1983).

    Google Scholar 

  17. Penn, M. & Dworkin, M. Robert Koch and two visions of microbiology. Bacteriol. Rev. 40, 276–283 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zavarzin, G. A. Winogradsky and modern microbiology. Microbiology 75, 501–555 (2006).

    Article  CAS  Google Scholar 

  19. Stanier, R. Y. The life-work of a founder of bacteriology: a review of 'Microbiologie du Sol'. Q. Rev. Biol. 26, 35–37 (1951).

    Article  Google Scholar 

  20. Darwin, C. The Variation of Animals and Plants under Domestication 2nd edn Vol. 2 242 (Appleton & Co, New York, 1883).

    Google Scholar 

  21. van Iterson, G. Jr, den Dooren de Jong, L. E. & Kluyver, A. J. (eds) Martinus Willem Beijerinck: His Life and His Work (Science Tech Madison, Wisconsin, 1983).

    Google Scholar 

  22. Beijerinck, M. W. De infusies en de ontdekking der bakterien. Jaarboek van de Koninklijke Akademie van Wetenschappen 1–28 (1913).

  23. de Wit, R. & Bouvier, T. 'Everything is everywhere, but the environment selects'; what did Baas Becking and Beijerinck really say? Environ. Microbiol. 8, 755–758 (2006).

    Article  PubMed  Google Scholar 

  24. Pasteur, L. in Milestones in Microbiology (ed. Brock, T. D.) 43–48 (Prentice-Hall, Englewood Cliffs, New Jersey, 1961).

    Google Scholar 

  25. Beijerinck, M. W. & van Dam, J. The remarkable sunsets (Letters). Nature 29, 175 (1884).

    Google Scholar 

  26. van Niel, C. B. The 'Delft School' and the rise of general microbiology. Bacteriol. Rev. 13, 161–174 (1949).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Amsterdamska, O. Medical and biological constraints: early research on variation in bacteriology. Soc. Stud. Sci. 17, 657–687 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Mendelsohn, J. A. 'Like all that lives': biology, medicine and bacteria in the age of Pasteur and Koch. Hist. Philos. Life Sci. 24, 3–36 (2002).

    Article  PubMed  Google Scholar 

  29. Chung, K. T. & Ferris, D. H. Martinus Willem Beijerinck (1851–1931): pioneer of general microbiology. ASM News 62, 539–543 (1996).

    Google Scholar 

  30. Amsterdamska, O. in Beijerinck and the Delft School of Microbiology (eds Bos, P. & Theunissen, B.) 193–213 (Delft University Press, Delft, 1995).

    Google Scholar 

  31. Ia Rivière, J. W. M. The Delft school of microbiology in historical perspective. Antonie van Leeuwenhoek 71, 3–13 (1997).

    Article  Google Scholar 

  32. Bennett, J. W. & Phaff, H. J. Early biotechnology: the Delft connection. ASM News 59, 401–404 (1993).

    Google Scholar 

  33. Beijerinck, M. W. On different forms of hereditary variation of microbes. Reprinted in Verzamelde Geschriften van M. W. Beijerinck Vol. 4, S. 37 (Martinus Nijhoff, The Hague, 1921–1940).

  34. Beijerinck, M. W. The enzyme theory of heredity. Reprinted in Verzamelde Geschriften van M. W. Beijerinck Vol. 5, S. 248 (Martinus Nijhoff, The Hague, 1921–1940).

  35. Theunissen, B. The beginnings of the 'Delft tradition' revisited: Martinus W. Beijerinck and the genetics of microorganisms. J. Hist. Biol. 29, 197–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Kinch, M. P. Geographical distribution and the origin of life: the development of early nineteenth-century British explanations. J. Hist. Biol. 13, 91–119 (1980).

    Article  CAS  PubMed  Google Scholar 

  37. de Candolle, A. P. & Sprengel, K. Elements of the Philosophy of Plants: Containing the Principles of Scientific Botany (Blackwood, Edinburgh, 1821).

    Google Scholar 

  38. Esteban, G. F. & Finlay, B. J. Historical encounters with a little-known ciliate (Gerda glans Claparède and Lachmann, 1858) from the 'Jungfernheide'. Protist 153, 79–86 (2002).

    Article  PubMed  Google Scholar 

  39. Ehrenberg, C. G. Über das mächtigste bis jetzt bekannt gewordene (angeblich 500 fub mächtige) Lager von mikroskopischen reinen kieselschaligen Sübwasser-Formen am Wasserfall-Flusse im Oregon. Bericht ü ber die zur Bekanntmachung geeigneten Verhandlungen der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, 76–87 (1849).

  40. Ehrenberg, C. G. On infusorial deposits on the River Chutes in Oregon. Am. J. Sci. 9, 140 (1850).

    Google Scholar 

  41. Ehrenberg, C. G. Die Infusionsthierchen als volkommene Organismen: Ein Blick in das tiefere organische Leben der Natur. (Voss, Leipzig, 1838).

  42. Darwin, C. The Voyage of the Beagle 11th edn (Henry Colborn, London, 1839), [online]

    Google Scholar 

  43. Williams, D. M. & Huxley, R. Christian Gottfried Ehrenberg (1795–1876): the man and his legacy. An introduction. Linnean 1, 1–13 (1998).

    Google Scholar 

  44. Baas Becking, L. G. M. Geobiologie of Inleiding Tot de Milieukunde (Van Stockum & Zoon, The Hague, 1934).

    Google Scholar 

  45. Spath, S. van Niel's course in general microbiology. ASM News 70, 359–363 (2004).

    Google Scholar 

  46. Kluyver, A. J. Leeuwenhoek lecture: The changing appraisal of the microbe. Proc. Roy. Soc. Lond. Ser. B. 141, 147–161 (1953).

    Article  CAS  Google Scholar 

  47. Funk, V. A. in Foundations of Biogeography: Classic Papers with Commentaries (eds M. V. Lomolino, D. F. Sax & J. H. Brown) 645–657 (University of Chicago Press, Chicago, 2004).

    Google Scholar 

  48. Brock, T. D. Principles of Microbial Ecology (Prentice-Hall, Englewood Cliffs, New Jersey, 1966).

    Google Scholar 

  49. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Doolittle, W. F. Phylogenetic classification and the universal tree. Science 284, 2124–2129 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Pace, N. R., Stahl, D. A., Lane, D. J., & Olsen, G. J. The analysis of natural microbial populations by ribosomal RNA sequences. Adv. Microb. Ecol. 9, 1–5 (1986).

    Article  CAS  Google Scholar 

  52. Staley, J. T. & Gosink, J. J. Poles apart: biodiversity and biogeography of sea ice bacteria. Annu. Rev. Microbiol. 53, 189–215 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Papke, R. T., Ramsing, N. B., Bateson, M. M. & Ward, D. M. Geographical isolation in hot spring cyanobacteria. Environ. Microbiol. 5, 650–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Whitaker, R. J., Grogan, D. W., & Taylor, J. W. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301, 976–978 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Ramette, A. & Tiedje, J. M. Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb. Ecol. 53, 197–207 (2006).

    Article  Google Scholar 

  56. Baas Becking, L. G. M., Kaplan, I. R. & Moore, D. Limits of the natural environment in terms of pH and oxidation-reduction potentials. J. Geol. 68, 243–284 (1960).

    Article  CAS  Google Scholar 

  57. Baas Becking, L. G. M. Gaia of Leven en Aarde (Martinus Nijhoff, The Hague, 1931).

    Book  Google Scholar 

  58. De Jong, M. & Kwa, C. Ecological theories and Dutch nature conservation. Biodiv. Conserv. 9, 1171–1186 (2000).

    Article  Google Scholar 

  59. Gause, G. F. The Struggle for Existence (Williams & Wilkins, Baltimore, 1934).

    Book  Google Scholar 

  60. De Wit, R. Biodiversity and ecosystem functioning in transitional waters; the point of view of a microbial ecologist. Transit. Waters Bull. 1, 3–16 (2007).

    Google Scholar 

  61. Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. M. A taxa–area relationship for bacteria. Nature 432, 750–753 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Nesbø, C. L., Dlutek, M. & Doolittle, W. F. Recombination in Thermotoga: implications for species concepts and biogeography. Genetics 172, 759–769 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  63. de Candolle, A. P. in Dictionnaire des Sciences Naturelles, XVIII (ed. Cuvier, F.) 359–436 (Levrault, Strasbourg/Paris, 1820).

    Google Scholar 

  64. Nelson, G. From Candolle to Croizat: comments on the history of biogeography. J. Hist. Biol. 11, 269–305 (1978).

    Article  CAS  PubMed  Google Scholar 

  65. Robertson, L. A. The Delft school of microbiology, from the nineteenth to the twenty-first century. Adv. Appl. Microbiol. 52, 357–388 (2003).

    Article  PubMed  Google Scholar 

  66. Beijerinck, M. W. Verzamelde Geschriften van M. W. Beijerinckter Gelegenheid van zijn 70sten Verjaardag, 1, 1–6 (Martinus Nijhoff, The Hague, 1921–1940).

Download references

Acknowledgements

Many thanks for comments and suggestions are owed to S. Müller-Wille, J. Calvert, J. Dupré and S. Hughes (Egenis, University of Exeter), G. McOuat (University of King's College, Nova Scotia), T. Papke, F. Doolittle and other members of the Doolittle, Roger and Archibald laboratories, as well as the Evolution Study Group (Dalhousie University, Nova Scotia) and the anonymous reviewers of this paper. The British Academy provided an Overseas Conference Grant for the presentation of draft papers, and the UK Arts and Humanities Research Council funded the research, which was done under the auspices of the UK's Economic and Social Research Council's Centre for Genomics in Society. L. A. Robertson was especially helpful in regard to selecting images from the archives of the Delft School of Microbiology.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Maureen A. O'Malley's homepage:

The archives of the Delft School of Microbiology at the Delft University of Technology:

Susan Spath's dissertation on C. B. van Niel and the culture of microbiology:

Glossary

Biogeography

The descriptive and explanatory study of the spatial patterning of biodiversity.

Cosmopolitan

Globally distributed.

Disjunction

The spatial separation of populations due to dispersal or vicariance.

Dispersal

The flow of organisms from one location to another, either passively (for example, blown by wind) or actively (for example, flight).

Endemic

Restricted to specific geographic locations.

Elective culture

A culturing technique designed to favour specific nutritional or physical needs, taken up by Beijerinck as enrichment culturing.

Vicariance

The separation of once continuous populations into separate populations by geological or climatic events.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Malley, M. The nineteenth century roots of 'everything is everywhere'. Nat Rev Microbiol 5, 647–651 (2007). https://doi.org/10.1038/nrmicro1711

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing