Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The septin family of GTPases: architecture and dynamics

Key Points

  • Septins comprise a conserved family of GTP-binding proteins that have multiple roles during cell division, cytoskeletal organization and membrane remodelling events.

  • Individual septins form smaller core complexes both in vivo and in vitro and contain, depending on the organism, two, three or four septins, each present in two copies. Core complexes oligomerize to form higher-order structures in vivo.

  • Electron microscopy and crystallographic studies have revealed that the septin core structure is mediated by interactions between GTP-binding domains across two distinct dimerization interfaces. Metazoan core complexes, in which the core complex architecture has been determined, oligomerize to form filaments across G-dimer interfaces, whereas the Saccharomyces cerevisiae complex forms complexes across the NC-dimer interface.

  • The G-dimer interface of septin oligomers is similar to the dimerization interface that is observed for the related Toc GTPases, which suggests that mechanistic similarities may exist between these evolutionarily related GTPases. However, the functional consequences of GTP binding and hydrolysis by septins for complex formation remain mysterious.

  • Septin core complexes form higher-order filaments that can dynamically engage the plasma membrane at the bud neck in S. cerevisiae, undergoing complex topological transitions during the cell cycle.

  • It remains unclear how septin-filament assembly is regulated and precisely how GTP binding and hydrolysis, as well as protein cofactors, regulate the assembly and disassembly of septin structure in vivo.

Abstract

Septins comprise a conserved family of proteins that are found primarily in fungi and animals. These GTP-binding proteins have several roles during cell division, cytoskeletal organization and membrane-remodelling events. One factor that is crucial for their functions is the ordered assembly of individual septins into oligomeric core complexes that, in turn, form higher-order structures such as filaments, rings and gauzes. The molecular details of these interactions and the mechanism by which septin-complex assembly is regulated have remained elusive. Recently, the first detailed structural views of the septin core have emerged, and these, along with studies of septin dynamics in vivo, have provided new insight into septin-complex assembly and septin function in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure and classification of septins.
Figure 2: Core septin complexes share a common geometry.
Figure 3: Structure of the septin monomer and filament.
Figure 4: Structural similarities between septins and the Toc family of paraseptins.
Figure 5: Model for septin dynamics at the bud neck.

Similar content being viewed by others

References

  1. Hartwell, L. H. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp. Cell Res. 69, 265–276 (1971). This study marked the beginning of the septin field with the first identification of septin mutants in S. cerevisiae .

    Article  CAS  PubMed  Google Scholar 

  2. Byers, B. & Goetsch, L. A highly ordered ring of membrane-associated filaments in budding yeast. J. Cell Biol. 69, 717–721 (1976). This classic EM study identified the 10-nm striations at the S. cerevisiae bud neck that would become known as the septin collar.

    Article  CAS  PubMed  Google Scholar 

  3. Haarer, B. K. & Pringle, J. R. Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother–bud neck. Mol. Cell Biol. 7, 3678–3687 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim, H. B., Haarer, B. K. & Pringle, J. R. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC3 gene product and the timing of events at the budding site. J. Cell Biol. 112, 535–544 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Ford, S. K. & Pringle, J. R. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC11 gene product and the timing of events at the budding site. Dev. Genet. 12, 281–292 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Byers, B. in The Molecular Biology of the Yeast Saccharomyes: Life Cycle and Inheritance (eds Strathern, J. N., Jones, E. W. and Broach, J. R.) 59–96 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1981).

    Google Scholar 

  7. Byers, B. & Goetsch, L. Loss of filamentous ring in cytokinesis-defective mutants of budding yeast. J. Cell Biol. 70, A35 (1976).

    Google Scholar 

  8. Frazier, J. A. et al. Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J. Cell Biol. 143, 737–749 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Field, C. M. et al. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol. 133, 605–616 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Kinoshita, M., Field, C. M., Coughlin, M. L., Straight, A. F. & Mitchison, T. J. Self- and actin-templated assembly of mammalian septins. Dev. Cell 3, 791–802 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Mendoza, M., Hyman, A. A. & Glotzer, M. GTP binding induces filament assembly of a recombinant septin. Curr. Biol. 12, 1858–1863 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Versele, M. et al. Protein–protein interactions governing septin heteropentamer assembly and septin filament organization in Saccharomyces cerevisiae. Mol. Biol. Cell 15, 4568–4583 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hall, P. A. & Russell, S. E. The pathobiology of the septin gene family. J. Pathol. 204, 489–505 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Versele, M. & Thorner, J. Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol. 15, 414–424 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pan, F., Malmberg, R. L. & Momany, M. Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol. Biol. 7, 103 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cao, L. et al. Phylogenetic and evolutionary analysis of the septin protein family in metazoan. FEBS Lett. 581, 5526–5532 (2007). This study provides detailed phylogenetic analyses of septins in both fungi and animals. See also reference 15.

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen, T. Q., Sawa, H., Okano, H. & White, J. G. The C. elegans septin genes, unc-59 and unc-61, are required for normal postembryonic cytokineses and morphogenesis but have no essential function in embryogenesis. J. Cell Sci. 113, 3825–3837 (2000).

    CAS  PubMed  Google Scholar 

  18. Kinoshita, M. Assembly of mammalian septins. J. Biochem. 134, 491–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Hall, P. A., Jung, K., Hillan, K. J. & Russell, S. E. Expression profiling the human septin gene family. J. Pathol. 206, 269–278 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Sirajuddin, M. et al. Structural insight into filament formation by mammalian septins. Nature 449, 311–315 (2007). In this study, the first crystal structure of a septin complex, the human SEPT2–SEPT6–SEPT7 complex, was solved.

    Article  CAS  PubMed  Google Scholar 

  21. Sheffield, P. J. et al. Borg/septin interactions and the assembly of mammalian septin heterodimers, trimers, and filaments. J. Biol. Chem. 278, 3483–3488 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Lukoyanova, N., Baldwin, S. A. & Trinick, J. 3D reconstruction of mammalian septin filaments. J. Mol. Biol. 376, 1–7 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. John, C. M. et al. The Caenorhabditis elegans septin complex is nonpolar. EMBO J. 26, 3296–3307 (2007). This study provides the first evidence that septin complexes are non-polar, using EM to delineate the UNC-59–UNC-61 complex from C. elegans .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mortensen, E. M., McDonald, H., Yates, J. 3rd & Kellogg, D. R. Cell cycle-dependent assembly of a Gin4–septin complex. Mol. Biol. Cell 13, 2091–2105 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vrabioiu, A. M., Gerber, S. A., Gygi, S. P., Field, C. M. & Mitchison, T. J. The majority of the Saccharomyces cerevisiae septin complexes do not exchange guanine nucleotides. J. Biol. Chem. 279, 3111–3118 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. McMurray, M. A. & Thorner, J. in The Septins (eds Hall, P.A., Russell, S. E. G. & Pringle, J. R.) (John Wiley & Sons, Ltd., Chicester, in the press).

  27. Rodal, A. A., Kozubowski, L., Goode, B. L., Drubin, D. G. & Hartwig, J. H. Actin and septin ultrastructures at the budding yeast cell cortex. Mol. Biol. Cell 16, 372–384 (2005). This study provides the first high-resolution views of cortical septin structures in yeast cells using rapid-freeze and deep-etch EM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fares, H., Goetsch, L. & Pringle, J. R. Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae. J. Cell Biol. 132, 399–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. De Virgilio, C., DeMarini, D. J. & Pringle, J. R. SPR28, a sixth member of the septin gene family in Saccharomyces cerevisiae that is expressed specifically in sporulating cells. Microbiology 142, 2897–2905 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Ozsarac, N., Bhattacharyya, M., Dawes, I. W. & Clancy, M. J. The SPR3 gene encodes a sporulation-specific homologue of the yeast CDC3/10/11/12 family of bud neck microfilaments and is regulated by ABFI. Gene 164, 157–162 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Chant, J. Septin scaffolds and cleavage planes in Saccharomyces. Cell 84, 187–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Sanders, S. L. & Herskowitz, I. The BUD4 protein of yeast, required for axial budding, is localized to the mother/BUD neck in a cell cycle-dependent manner. J. Cell Biol. 134, 413–427 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Halme, A., Michelitch, M., Mitchell, E. L. & Chant, J. Bud10p directs axial cell polarization in budding yeast and resembles a transmembrane receptor. Curr. Biol. 6, 570–579 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Roemer, T., Madden, K., Chang, J. & Snyder, M. Selection of axial growth sites in yeast requires Axl2p, a novel plasma membrane glycoprotein. Genes Dev. 10, 777–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Kang, P. J., Sanson, A., Lee, B. & Park, H. O. A GDP/GTP exchange factor involved in linking a spatial landmark to cell polarity. Science 292, 1376–1378 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kusch, J., Meyer, A., Snyder, M. P. & Barral, Y. Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast. Genes Dev. 16, 1627–1639 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grava, S., Schaerer, F., Faty, M., Philippsen, P. & Barral, Y. Asymmetric recruitment of dynein to spindle poles and microtubules promotes proper spindle orientation in yeast. Dev. Cell 10, 425–439 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Barral, Y., Parra, M., Bidlingmaier, S. & Snyder, M. Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev. 13, 176–187 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Longtine, M. S. et al. Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol. Cell Biol. 20, 4049–4061 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Longtine, M. S. & Bi, E. Regulation of septin organization and function in yeast. Trends Cell Biol. 13, 403–409 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Dobbelaere, J. & Barral, Y. Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science 305, 393–396 (2004). This study shows that septin rings act as barriers to compartmentalize the cortex around the site of cytokinesis.

    Article  CAS  PubMed  Google Scholar 

  42. Shulewitz, M. J., Inouye, C. J. & Thorner, J. Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 7123–7137 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lew, D. J. The morphogenesis checkpoint: how yeast cells watch their figures. Curr. Opin. Cell Biol. 15, 648–653 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Keaton, M. A. & Lew, D. J. Eavesdropping on the cytoskeleton: progress and controversy in the yeast morphogenesis checkpoint. Curr. Opin. Microbiol. 9, 540–546 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Enserink, J. M., Smolka, M. B., Zhou, H. & Kolodner, R. D. Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae. J. Cell Biol. 175, 729–741 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smolka, M. B. et al. An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth. J. Cell Biol. 175, 743–753 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takizawa, P. A., DeRisi, J. L., Wilhelm, J. E. & Vale, R. D. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290, 341–344 (2000). This study demonstrates that a membrane protein specifically translated in the bud is retained in the bud plasma membrane via a septin-dependent diffusion barrier.

    Article  CAS  PubMed  Google Scholar 

  48. Deutschbauer, A. M., Williams, R. M., Chu, A. M. & Davis, R. W. Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 99, 15530–15535 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Field, C. M. & Kellogg, D. Septins: cytoskeletal polymers or signalling GTPases? Trends Cell Biol. 9, 387–394 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Carroll, C. W., Altman, R., Schieltz, D., Yates, J. R. & Kellogg, D. The septins are required for the mitosis-specific activation of the Gin4 kinase. J. Cell Biol. 143, 709–717 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hanrahan, J. & Snyder, M. Cytoskeletal activation of a checkpoint kinase. Mol. Cell 12, 663–673 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Barral, Y., Mermall, V., Mooseker, M. S. & Snyder, M. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell 5, 841–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Luedeke, C. et al. Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth. J. Cell Biol. 169, 897–908 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, J. Q., Kuhn, J. R., Kovar, D. R. & Pollard, T. D. Spatial and temporal pathway for assembly and constriction of the contractile ring in fission yeast cytokinesis. Dev. Cell 5, 723–734 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. An, H., Morrell, J. L., Jennings, J. L., Link, A. J. & Gould, K. L. Requirements of fission yeast septins for complex formation, localization, and function. Mol. Biol. Cell 15, 5551–5564 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Berlin, A., Paoletti, A. & Chang, F. Mid2p stabilizes septin rings during cytokinesis in fission yeast. J. Cell Biol. 160, 1083–1092 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tasto, J. J., Morrell, J. L. & Gould, K. L. An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation. J. Cell Biol. 160, 1093–1103 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Longtine, M. S. et al. The septins: roles in cytokinesis and other processes. Curr. Opin. Cell Biol. 8, 106–119 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Warenda, A. J., Kauffman, S., Sherrill, T. P., Becker, J. M. & Konopka, J. B. Candida albicans septin mutants are defective for invasive growth and virulence. Infect. Immun. 71, 4045–4051 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gale, C. et al. Candida albicans Int1p interacts with the septin ring in yeast and hyphal cells. Mol. Biol. Cell 12, 3538–3549 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gerami-Nejad, M., Berman, J. & Gale, C. A. Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans. Yeast 18, 859–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Warenda, A. J. & Konopka, J. B. Septin function in Candida albicans morphogenesis. Mol. Biol. Cell 13, 2732–2746 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Helfer, H. & Gladfelter, A. S. AgSwe1p regulates mitosis in response to morphogenesis and nutrients in multinucleated Ashbya gossypii cells. Mol. Biol. Cell 17, 4494–4512 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Westfall, P. J. & Momany, M. Aspergillus nidulans septin AspB plays pre- and postmitotic roles in septum, branch, and conidiophore development. Mol. Biol. Cell 13, 110–118 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Maddox, A. S., Lewellyn, L., Desai, A. & Oegema, K. Anillin and the septins promote asymmetric ingression of the cytokinetic furrow. Dev. Cell 12, 827–835 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Finger, F. P., Kopish, K. R. & White, J. G. A role for septins in cellular and axonal migration in C. elegans. Dev. Biol. 261, 220–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Neufeld, T. P. & Rubin, G. M. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell 77, 371–379 (1994). This study identifies the first septin in metazoans, Pnut, as involved in cytokinesis. It also shows that septin genes, and aspects of their functions, are conserved beyond fungi.

    Article  CAS  PubMed  Google Scholar 

  68. Fares, H., Peifer, M. & Pringle, J. R. Localization and possible functions of Drosophila septins. Mol. Biol. Cell 6, 1843–1859 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Adam, J. C., Pringle, J. R. & Peifer, M. Evidence for functional differentiation among Drosophila septins in cytokinesis and cellularization. Mol. Biol. Cell 11, 3123–3135 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hime, G. R., Brill, J. A. & Fuller, M. T. Assembly of ring canals in the male germ line from structural components of the contractile ring. J. Cell Sci. 109, 2779–2788 (1996).

    CAS  PubMed  Google Scholar 

  71. Robinson, D. N. & Cooley, L. Stable intercellular bridges in development: the cytoskeleton lining the tunnel. Trends Cell Biol. 6, 474–479 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Spiliotis, E. T., Kinoshita, M. & Nelson, W. J. A mitotic septin scaffold required for mammalian chromosome congression and segregation. Science 307, 1781–1785 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Spiliotis, E. T. & Nelson, W. J. Here come the septins: novel polymers that coordinate intracellular functions and organization. J. Cell Sci. 119, 4–10 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Xue, J. et al. Phosphorylation of a new brain-specific septin, G-septin, by cGMP-dependent protein kinase. J. Biol. Chem. 275, 10047–10056 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Xie, Y. et al. The GTP-binding protein Septin 7 is critical for dendrite branching and dendritic-spine morphology. Curr. Biol. 17, 1746–1751 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Tada, T. et al. Role of Septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr. Biol. 17, 1752–1758 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ihara, M. et al. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev. Cell 8, 343–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Kissel, H. et al. The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev. Cell 8, 353–364 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Steels, J. D. et al. Sept12 is a component of the mammalian sperm tail annulus. Cell. Motil. Cytoskeleton 64, 794–807 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Ihara, M. et al. Sept4, a component of presynaptic scaffold and lewy bodies, is required for the suppression of α-synuclein neurotoxicity. Neuron 53, 519–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Ihara, M. et al. Association of the cytoskeletal GTP-binding protein Sept4/H5 with cytoplasmic inclusions found in Parkinson's disease and other synucleinopathies. J. Biol. Chem. 278, 24095–24102 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Kuhlenbaumer, G. et al. Mutations in SEPT9 cause hereditary neuralgic amyotrophy. Nature Genet. 37, 1044–1046 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Barral, Y. & Mansuy, I. M. Septins: cellular and functional barriers of neuronal activity. Curr. Biol. 17, R961–963 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Leipe, D. D., Wolf, Y. I., Koonin, E. V. & Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317, 41–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Sun, Y. J. et al. Crystal structure of pea Toc34, a novel GTPase of the chloroplast protein translocon. Nature Struct. Biol. 9, 95–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Scrima, A. & Wittinghofer, A. Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. EMBO J. 25, 2940–2951 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bertin, A. et al. Saccharomyces cerevisiae septins: supramolecular organization of hetero-oligomers and the mechanism of filament assembly. Proc. Natl Acad. Sci. USA in the press. In this study, the architecture of the S. cerevisiae septin core complex was determined using biochemistry and EM.

  90. Versele, M. & Thorner, J. Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4. J. Cell Biol. 164, 701–715 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Farkasovsky, M., Herter, P., Voss, B. & Wittinghofer, A. Nucleotide binding and filament assembly of recombinant yeast septin complexes. Biol. Chem. 386, 643–656 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Huang, Y. W., Surka, M. C., Reynaud, D., Pace-Asciak, C. & Trimble, W. S. GTP binding and hydrolysis kinetics of human septin 2. FEBS J. 273, 3248–3260 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Gasper, R., Scrima, A. & Wittinghofer, A. Structural insights into HypB, a GTP-binding protein that regulates metal binding. J. Biol. Chem. 281, 27492–27502 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Oreb, M., Tews, I. & Schleiff, E. Policing Tic 'n' Toc, the doorway to chloroplasts. Trends Cell Biol. 18, 19–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Bennett, M. J., Schlunegger, M. P. & Eisenberg, D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 4, 2455–2468 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Canals, A. et al. The structure of an engineered domain-swapped ribonuclease dimer and its implications for the evolution of proteins toward oligomerization. Structure 9, 967–976 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Mino, A. et al. Shs1p: a novel member of septin that interacts with spa2p, involved in polarized growth in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 251, 732–736 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Cid, V. J., Adamikova, L., Sanchez, M., Molina, M. & Nombela, C. Cell cycle control of septin ring dynamics in the budding yeast. Microbiology 147, 1437–1450 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, J. et al. Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr. Biol. 9, 1458–1467 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Casamayor, A. & Snyder, M. Molecular dissection of a yeast septin: distinct domains are required for septin interaction, localization, and function. Mol. Cell Biol. 23, 2762–2777 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vrabioiu, A. M. & Mitchison, T. J. Symmetry of septin hourglass and ring structures. J. Mol. Biol. 372, 37–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Vrabioiu, A. M. & Mitchison, T. J. Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443, 466–469 (2006). In references 101 and 102, the authors use polarized fluorescence microscopy to show that septins undergo a rotation during septin ring splitting and confirm that septin filaments lack polarity.

    Article  CAS  PubMed  Google Scholar 

  103. Dobbelaere, J., Gentry, M. S., Hallberg, R. L. & Barral, Y. Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev. Cell 4, 345–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Caviston, J. P., Longtine, M., Pringle, J. R. & Bi, E. The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol. Biol. Cell 14, 4051–4066 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Longtine, M. S., Fares, H. & Pringle, J. R. Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function. J. Cell Biol. 143, 719–736 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Asano, S. et al. Direct phosphorylation and activation of a Nim1-related kinase Gin4 by Elm1 in budding yeast. J. Biol. Chem. 281, 27090–27098 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Weiss, E. L., Bishop, A. C., Shokat, K. M. & Drubin, D. G. Chemical genetic analysis of the budding-yeast p21-activated kinase Cla4p. Nature Cell Biol. 2, 677–685 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Schmidt, M., Varma, A., Drgon, T., Bowers, B. & Cabib, E. Septins, under Cla4p regulation, and the chitin ring are required for neck integrity in budding yeast. Mol. Biol. Cell 14, 2128–2141 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kadota, J., Yamamoto, T., Yoshiuchi, S., Bi, E. & Tanaka, K. Septin ring assembly requires concerted action of polarisome components, a PAK kinase Cla4p, and the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Biol. Cell 15, 5329–5345 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tang, C. S. & Reed, S. I. Phosphorylation of the septin Cdc3 in G1 by the Cdc28 kinase is essential for efficient septin ring disassembly. Cell Cycle 1, 42–49 (2002).

    CAS  PubMed  Google Scholar 

  111. Johnson, E. S. & Blobel, G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 147, 981–994 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kinoshita, M. et al. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev. 11, 1535–1547 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Ito, H. et al. Possible role of Rho/Rhotekin signaling in mammalian septin organization. Oncogene 24, 7064–7072 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Nagata, K. et al. Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J. Biol. Chem. 278, 18538–18543 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Kremer, B. E., Haystead, T. & Macara, I. G. Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol. Biol. Cell 16, 4648–4659 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Surka, M. C., Tsang, C. W. & Trimble, W. S. The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol. Biol. Cell 13, 3532–3545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Joberty, G., Perlungher, R. R. & Macara, I. G. The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins. Mol. Cell Biol. 19, 6585–6597 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Joberty, G. et al. Borg proteins control septin organization and are negatively regulated by Cdc42. Nature Cell Biol. 3, 861–866 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gladfelter, A. S., Pringle, J. R. & Lew, D. J. The septin cortex at the yeast mother–bud neck. Curr. Opin. Microbiol. 4, 681–689 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Nogales, J. Thorner, M. A. McMurray and colleagues for sharing data before publication and for critical reading of the manuscript. We thank T. L. Weirich for help in computer modelling of septin filaments. We also thank members of the Barral laboratory for discussion. J.P.E. is an European Molecular Biology Organization (EMBO) fellow. C.S.W. is a Human Frontier Science Program (HFSP) fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Barral.

Supplementary information

41580_2008_BFnrm2407_MOESM1_ESM.pdf

Supplementary information S1 (figure) | Structure-guided sequence alignment of the G-domains of human SEPT2, SEPT6, SEPT7, Arabidopsis thaliana Toc33 and Pisum sativum Toc34. (PDF 1374 kb)

Related links

Related links

DATABASES

Protein Data Bank

1ctq

1h65

2qa5

2qag

1wq1

FURTHER INFORMATION

Yves Barral's homepage

Jan Erzberger's homepage

Glossary

Cytokinesis

The process of cytoplasmic division.

Coiled-coil domain

A structural motif in proteins that consists of two or more α-helices that twist around each other, similar to a rope, to form a stable, rod-like structure.

Anaphase

The phase during eukaryotic mitosis during which chromosomes are segregated.

Hyphal growth

A type of vegetative growth in fungi in which cells are divided by incomplete septa, allowing transfer of cytoplasm and sometimes of larger structures, such as ribosomes, mitochondria and nuclei, between cells.

Pseudohyphal growth

A type of fungal vegetative growth during which hyphal-like structures are formed. During pseudohyphal growth, cells do not share cytoplasm.

Cleavage furrow

A constriction or indentation of the plasma membrane that marks the beginning of cytokinesis in animal cells.

Spindle midbody

The remnant of the spindle midzone and cleavage furrow in animal cells. The spindle midbody contains proteins and occupies the narrow channel that connects daughter cells upon completion of cytokinesis.

Cellularization membrane

The region of the plasma membrane that encloses nuclei and surrounding cytoplasm to form the cellular blastoderm in Drosophila melanogaster eggs, which contain approximately 5,000 nuclei within a shared cytoplasm.

P-loop

(Phosphate-binding loop). A nucleotide-binding-site motif that is found in many ATPases and GTPases.

Polarized fluorescence microscopy

An optical technique in which polarized light is used to excite a fluorophore. Because excitation depends on the direction of the dipole relative to the polarized light, this method can be used to determine the orientation of a population of fluorophores, provided that they are rigidly and uniformly orientated.

FRAP

A microscopy technique that is used to measure the movement (for example, diffusion rates) of fluorescently tagged molecules over time in vivo. Specific regions of a cell are irreversibly photobleached using a laser; fluorescence is restored by diffusion of fluorescently tagged unbleached molecules into the bleached area.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weirich, C., Erzberger, J. & Barral, Y. The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9, 478–489 (2008). https://doi.org/10.1038/nrm2407

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2407

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing