Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The molecular basis for centromere identity and function

Key Points

  • Centromeres are defined epigenetically and require the presence of the centromere-specific histone H3 variant centromere protein A (CENP-A).

  • Although DNA sequences are not strictly required for centromere specification, similarities in the organization of centromere DNA suggest that DNA structures contribute to centromere function.

  • CENP-A nucleosomes contain unique sequence and structural features that allow them to stably mark the centromere and be recognized by kinetochore components.

  • CENP-A propagation requires specialized deposition factors and tight regulatory control.

  • The centromere directs the assembly of the kinetochore via the 16-subunit constitutive centromere-associated network (CCAN).

Abstract

The centromere is the region of the chromosome that directs its segregation in mitosis and meiosis. Although the functional importance of the centromere has been appreciated for more than 130 years, elucidating the molecular features and properties that enable centromeres to orchestrate chromosome segregation is an ongoing challenge. Most eukaryotic centromeres are defined epigenetically and require the presence of nucleosomes containing the histone H3 variant centromere protein A (CENP-A; also known as CENH3). Ongoing work is providing important molecular insights into the central requirements for centromere identity and propagation, and the mechanisms by which centromeres recruit kinetochores to connect to spindle microtubules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visualization of the centromere.
Figure 2: Centromere specification.
Figure 3: Specialization and propagation of centromere protein A (CENP-A).
Figure 4: Centromeric chromatin.
Figure 5: Contributions of the constitutive centromere-associated network (CCAN) at the centromere–kinetochore interface.

Similar content being viewed by others

References

  1. Holland, A. J. & Cleveland, D. W. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell Biol. 10, 478–487 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Flemming, W. Zellsubstanz, Kern und Zelltheilung (in German) (F. C. W. Vogel, 1882).

    Google Scholar 

  3. Vig, B. K. Sequence of centromere separation: role of centromeric heterochromatin. Genetics 102, 795–806 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542 (2001).

    CAS  PubMed  Google Scholar 

  5. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).

    CAS  PubMed  Google Scholar 

  6. Kerrebrock, A. W., Moore, D. P., Wu, J. S. & Orr-Weaver, T. L. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell 83, 247–256 (1995).

    CAS  PubMed  Google Scholar 

  7. Lindegren, C. C. The genetics of Neurospora III: pure bred stocks and crossing over in N. crassa. Bull. Torrey Bot. Club 60, 133–154 (1933).

    Google Scholar 

  8. Bridges, C. B. & Morgan, T. H. The Third-chromosome Group of Mutant Characters of Drosophila melanogaster (Carnegie Institution of Washington, 1923).

    Google Scholar 

  9. Fukagawa, T. & Earnshaw, W. C. The centromere: chromatin foundation for the kinetochore machinery. Dev. Cell 30, 496–508 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Darlington, C. D. The external mechanics of chromosomes. I — The scope of enquiry. Proc. R. Soc. B Biol. Sci. 121, 264–319 (1936).

    Google Scholar 

  11. Guerra, M. et al. Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenet. Genome Res. 129, 82–96 (2010).

    CAS  PubMed  Google Scholar 

  12. Pluta, A. F., Mackay, A. M., Ainsztein, A. M., Goldberg, I. G. & Earnshaw, W. C. The centromere: hub of chromosomal activities. Science 270, 1591–1594 (1995).

    CAS  PubMed  Google Scholar 

  13. Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509 (1980). This paper describes the first cloning of a budding yeast centromere sequence and the sufficiency of this sequence to direct the segregation of exogenous DNA.

    CAS  PubMed  Google Scholar 

  14. Clarke, L. & Carbon, J. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature 305, 23–28 (1983).

    CAS  PubMed  Google Scholar 

  15. Carbon, J. & Clarke, L. Structural and functional analysis of a yeast centromere (CEN3). J. Cell Sci. Suppl. 1, 43–58 (1984).

    CAS  PubMed  Google Scholar 

  16. McGrew, J., Diehl, B. & Fitzgerald-Hayes, M. Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 530–538 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanyal, K., Baum, M. & Carbon, J. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc. Natl Acad. Sci. USA 101, 11374–11379 (2004).

    CAS  PubMed  Google Scholar 

  18. Locke, D. P. et al. Comparative and demographic analysis of orang-utan genomes. Nature 469, 529–533 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Piras, F. M. et al. Uncoupling of satellite DNA and centromeric function in the genus Equus. PLoS Genet. 6, e1000845 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Shang, W. H. et al. Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res. 20, 1219–1228 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kit, S. Equilibrium sedimentation in density gradients of DNA preparations from animal tissues. J. Mol. Biol. 3, 711–716 (1961).

    CAS  PubMed  Google Scholar 

  22. Malik, H. S. & Henikoff, S. Major evolutionary transitions in centromere complexity. Cell 138, 1067–1082 (2009).

    CAS  PubMed  Google Scholar 

  23. Fishel, B., Amstutz, H., Baum, M., Carbon, J. & Clarke, L. Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Mol. Cell. Biol. 8, 754–763 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Joseph, A., Mitchell, A. R. & Miller, O. J. The organization of the mouse satellite DNA at centromeres. Exp. Cell Res. 183, 494–500 (1989).

    CAS  PubMed  Google Scholar 

  25. Maio, J. J. DNA strand reassociation and polyribonucleotide binding in the African green monkey, Cercopithecus aethiops. J. Mol. Biol. 56, 579–595 (1971).

    CAS  PubMed  Google Scholar 

  26. Rosenberg, H., Singer, M. & Rosenberg, M. Highly reiterated sequences of SIMIANSIMIANSIMIANSIMIANSIMIAN. Science 200, 394–402 (1978).

    CAS  PubMed  Google Scholar 

  27. Manuelidis, L. Chromosomal localization of complex and simple repeated human DNAs. Chromosoma 66, 23–32 (1978).

    CAS  PubMed  Google Scholar 

  28. Manuelidis, L. Complex and simple sequences in human repeated DNAs. Chromosoma 66, 1–21 (1978).

    CAS  PubMed  Google Scholar 

  29. Aldrup-Macdonald, M. E. & Sullivan, B. A. The past, present, and future of human centromere genomics. Genes 5, 33–50 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Montefalcone, G., Tempesta, S., Rocchi, M. & Archidiacono, N. Centromere repositioning. Genome Res. 9, 1184–1188 (1999). This paper provided the first evidence that centromeres have repositioned over evolutionary history, independently of their surrounding markers.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rocchi, M., Archidiacono, N., Schempp, W., Capozzi, O. & Stanyon, R. Centromere repositioning in mammals. Heredity 108, 59–67 (2012).

    CAS  PubMed  Google Scholar 

  32. Kasai, F., Garcia, C., Arruga, M. V. & Ferguson-Smith, M. A. Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet. Genome Res. 102, 326–330 (2003).

    CAS  PubMed  Google Scholar 

  33. Ventura, M. et al. Evolutionary formation of new centromeres in macaque. Science 316, 243–246 (2007).

    CAS  PubMed  Google Scholar 

  34. Kalitsis, P. & Choo, K. H. The evolutionary life cycle of the resilient centromere. Chromosoma 121, 327–340 (2012).

    CAS  PubMed  Google Scholar 

  35. Hahnenberger, K. M., Baum, M. P., Polizzi, C. M., Carbon, J. & Clarke, L. Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 86, 577–581 (1989).

    CAS  PubMed  Google Scholar 

  36. Haaf, T., Warburton, P. E. & Willard, H. F. Integration of human α-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell 70, 681–696 (1992).

    CAS  PubMed  Google Scholar 

  37. Harrington, J. J., Van Bokkelen, G., Mays, R. W., Gustashaw, K. & Willard, H. F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15, 345–355 (1997).

    CAS  PubMed  Google Scholar 

  38. Ikeno, M. et al. Construction of YAC-based mammalian artificial chromosomes. Nat. Biotechnol. 16, 431–439 (1998). References 37 and 38 describe the first use of human centromeric DNA to confer mitotic stability on exogenous DNA to generate artificial chromosomes.

    CAS  PubMed  Google Scholar 

  39. Masumoto, H. et al. Assay of centromere function using a human artificial chromosome. Chromosoma 107, 406–416 (1998).

    CAS  PubMed  Google Scholar 

  40. Bergmann, J. H. et al. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J. 30, 328–340 (2011).

    CAS  PubMed  Google Scholar 

  41. Ohzeki, J. et al. Breaking the HAC barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J. 31, 2391–2402 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lechner, J. & Carbon, J. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64, 717–725 (1991).

    CAS  PubMed  Google Scholar 

  43. Masumoto, H., Masukata, H., Muro, Y., Nozaki, N. & Okazaki, T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 109, 1963–1973 (1989).

    CAS  PubMed  Google Scholar 

  44. Muro, Y. et al. Centromere protein B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box. J. Cell Biol. 116, 585–596 (1992).

    CAS  PubMed  Google Scholar 

  45. Earnshaw, W. C. & Rothfield, N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91, 313–321 (1985). This paper reports the discovery of the first human centromere proteins, CENP-A, CENP-B and CENP-C, as antigens recognized by serum from patients with CREST syndrome.

    CAS  PubMed  Google Scholar 

  46. Haaf, T., Mater, A. G., Wienberg, J. & Ward, D. C. Presence and abundance of CENP-B box sequences in great ape subsets of primate-specific α-satellite DNA. J. Mol. Evol. 41, 487–491 (1995).

    CAS  PubMed  Google Scholar 

  47. Kipling, D. et al. CENP-B binds a novel centromeric sequence in the Asian mouse Mus caroli. Mol. Cell. Biol. 15, 4009–4020 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fachinetti, D. et al. A two-step mechanism for epigenetic specification of centromere identity and function. Nat. Cell Biol. 15, 1056–1066 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fachinetti, D. et al. DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function. Dev. Cell 33, 314–327 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fujita, R. et al. Stable complex formation of CENP-B with the CENP-A nucleosome. Nucleic Acids Res. 43, 4909–4922 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kapoor, M. et al. The cenpB gene is not essential in mice. Chromosoma 107, 570–576 (1998).

    CAS  PubMed  Google Scholar 

  52. Perez-Castro, A. V. et al. Centromeric protein B null mice are viable with no apparent abnormalities. Dev. Biol. 201, 135–143 (1998).

    CAS  PubMed  Google Scholar 

  53. Hudson, D. F. et al. Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J. Cell Biol. 141, 309–319 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Voullaire, L. E., Slater, H. R., Petrovic, V. & Choo, K. H. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am. J. Hum. Genet. 52, 1153–1163 (1993). This paper reports the first human neocentromere, demonstrating that centromeres can function in the absence of the human centromeric α-satellite sequences.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Earnshaw, W. C. et al. Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J. Cell Biol. 104, 817–829 (1987).

    CAS  PubMed  Google Scholar 

  56. Broccoli, D., Miller, O. J. & Miller, D. A. Relationship of mouse minor satellite DNA to centromere activity. Cytogenet. Cell Genet. 54, 182–186 (1990).

    CAS  PubMed  Google Scholar 

  57. Grimes, B. R., Rhoades, A. A. & Willard, H. F. α-satellite DNA and vector composition influence rates of human artificial chromosome formation. Mol. Ther. 5, 798–805 (2002).

    CAS  PubMed  Google Scholar 

  58. Ohzeki, J., Nakano, M., Okada, T. & Masumoto, H. CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J. Cell Biol. 159, 765–775 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Palmer, D. K. & Margolis, R. L. Kinetochore components recognized by human autoantibodies are present on mononucleosomes. Mol. Cell. Biol. 5, 173–186 (1985). This paper provided the first indication that centromere components (defined by detection with serum from patients with CREST syndrome and now recognized as CENP-A) are components of chromatin and proposed that such components may be exchanged for canonical histones at the centromere.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Palmer, D. K., O'Day, K. & Margolis, R. L. The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma 100, 32–36 (1990).

    CAS  PubMed  Google Scholar 

  61. Palmer, D. K., O'Day, K., Trong, H. L., Charbonneau, H. & Margolis, R. L. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc. Natl Acad. Sci. USA 88, 3734–3738 (1991).

    CAS  PubMed  Google Scholar 

  62. Palmer, D. K., O'Day, K., Wener, M. H., Andrews, B. S. & Margolis, R. L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 104, 805–815 (1987).

    CAS  PubMed  Google Scholar 

  63. Sullivan, K. F., Hechenberger, M. & Masri, K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127, 581–592 (1994). This paper reports the cloning of human CENP-A and defined the importance of its domain containing sequence homology to histone H3.

    CAS  PubMed  Google Scholar 

  64. Buchwitz, B. J., Ahmad, K., Moore, L. L., Roth, M. B. & Henikoff, S. A histone-H3-like protein in C. elegans. Nature 401, 547–548 (1999).

    CAS  PubMed  Google Scholar 

  65. Henikoff, S., Ahmad, K., Platero, J. S. & van Steensel, B. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl Acad. Sci. USA 97, 716–721 (2000).

    CAS  PubMed  Google Scholar 

  66. Takahashi, K., Chen, E. S. & Yanagida, M. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288, 2215–2219 (2000).

    CAS  PubMed  Google Scholar 

  67. Warburton, P. E. et al. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr. Biol. 7, 901–904 (1997).

    CAS  PubMed  Google Scholar 

  68. Vafa, O. & Sullivan, K. F. Chromatin containing CENP-A and α-satellite DNA is a major component of the inner kinetochore plate. Curr. Biol. 7, 897–900 (1997).

    CAS  PubMed  Google Scholar 

  69. Marshall, O. J., Chueh, A. C., Wong, L. H. & Choo, K. H. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am. J. Hum. Genet. 82, 261–282 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Earnshaw, W. C. & Migeon, B. R. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92, 290–296 (1985). This paper provided the first evidence for the epigenetic nature of the centromere, by observing that the inactive centromere of a dicentric chromosome maintained the centromeric DNA structures (as detected by traditional banding techniques) but lacked detectable centromere proteins.

    CAS  PubMed  Google Scholar 

  71. Liu, S. T., Rattner, J. B., Jablonski, S. A. & Yen, T. J. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol. 175, 41–53 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Regnier, V. et al. CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol. Cell. Biol. 25, 3967–3981 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Heun, P. et al. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell 10, 303–315 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mendiburo, M. J., Padeken, J., Fulop, S., Schepers, A. & Heun, P. Drosophila CENH3 is sufficient for centromere formation. Science 334, 686–690 (2011).

    CAS  PubMed  Google Scholar 

  75. Barnhart, M. C. et al. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 194, 229–243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Logsdon, G. A. et al. Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. J. Cell Biol. 208, 521–531 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Goutte-Gattat, D. et al. Phosphorylation of the CENP-A amino-terminus in mitotic centromeric chromatin is required for kinetochore function. Proc. Natl Acad. Sci. USA 110, 8579–8584 (2013).

    CAS  PubMed  Google Scholar 

  78. Black, B. E., Brock, M. A., Bedard, S., Woods, V. L. Jr & Cleveland, D. W. An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc. Natl Acad. Sci. USA 104, 5008–5013 (2007).

    CAS  PubMed  Google Scholar 

  79. Black, B. E. et al. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell 25, 309–322 (2007). This study uses chimeric histones containing elements of histone H3 combined with elements of CENP-A to demonstrate that the centromere recruitment of CENP-A is encoded by its first loop and second α-helix, defining the CATD.

    CAS  PubMed  Google Scholar 

  80. Carroll, C. W., Milks, K. J. & Straight, A. F. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol. 189, 1143–1155 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Carroll, C. W., Silva, M. C., Godek, K. M., Jansen, L. E. & Straight, A. F. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat. Cell Biol. 11, 896–902 (2009). References 80 and 81 report the interaction of CENP-C and CENP-N with CENP-A nucleosomes, providing the first direct physical connections between CENP-A nucleosomes and the proteins of the kinetochore.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kato, H. et al. A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 340, 1110–1113 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Guse, A., Carroll, C. W., Moree, B., Fuller, C. J. & Straight, A. F. In vitro centromere and kinetochore assembly on defined chromatin templates. Nature 477, 354–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Westhorpe, F. G., Fuller, C. J. & Straight, A. F. A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance. J. Cell Biol. 209, 789–801 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen, Y. et al. The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol. Cell. Biol. 20, 7037–7048 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Van Hooser, A. A. et al. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci. 114, 3529–3542 (2001).

    CAS  PubMed  Google Scholar 

  87. Folco, H. D. et al. The CENP-A N-tail confers epigenetic stability to centromeres via the CENP-T branch of the CCAN in fission yeast. Curr. Biol. 25, 348–356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Black, B. E. et al. Structural determinants for generating centromeric chromatin. Nature 430, 578–582 (2004).

    CAS  PubMed  Google Scholar 

  89. Sekulic, N., Bassett, E. A., Rogers, D. J. & Black, B. E. The structure of (CENP-A–H4)2 reveals physical features that mark centromeres. Nature 467, 347–351 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tachiwana, H. et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 476, 232–235 (2011).

    CAS  PubMed  Google Scholar 

  91. Falk, S. J. et al. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science 348, 699–703 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dunleavy, E. M., Zhang, W. & Karpen, G. H. Solo or doppio: how many CENP-As make a centromeric nucleosome? Nat. Struct. Mol. Biol. 20, 648–650 (2013).

    CAS  PubMed  Google Scholar 

  93. Panchenko, T. et al. Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini. Proc. Natl Acad. Sci. USA 108, 16588–16593 (2011).

    CAS  PubMed  Google Scholar 

  94. Geiss, C. P. et al. CENP-A arrays are more condensed than canonical arrays at low ionic strength. Biophys. J. 106, 875–882 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Conde e Silva, N. et al. CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. J. Mol. Biol. 370, 555–573 (2007).

    CAS  PubMed  Google Scholar 

  96. Hasson, D. et al. The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat. Struct. Mol. Biol. 20, 687–695 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. McClintock, B. The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc. Natl Acad. Sci. USA 25, 405–416 (1939).

    CAS  PubMed  Google Scholar 

  98. Koshland, D., Rutledge, L., Fitzgerald-Hayes, M. & Hartwell, L. H. A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae. Cell 48, 801–812 (1987).

    CAS  PubMed  Google Scholar 

  99. Jansen, L. E., Black, B. E., Foltz, D. R. & Cleveland, D. W. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795–805 (2007). This paper provides a major advance in understanding the mechanisms that propagate CENP-A nucleosomes, by demonstrating the striking stability of CENP-A at centromeres, its partitioning between replicated sisters during S phase and its new assembly during G1.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bodor, D. L., Valente, L. P., Mata, J. F., Black, B. E. & Jansen, L. E. Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes. Mol. Biol. Cell 24, 923–932 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Dunleavy, E. M., Almouzni, G. & Karpen, G. H. H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G1 phase. Nucleus 2, 146–157 (2011).

    PubMed  PubMed Central  Google Scholar 

  102. Foltz, D. R. et al. Centromere-specific assembly of CENP-A nucleosomes is mediated by HJURP. Cell 137, 472–484 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Dunleavy, E. M. et al. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137, 485–497 (2009). References 102 and 103 report the discovery of the CENP-A specific chaperone, HJURP.

    CAS  PubMed  Google Scholar 

  104. Zhou, Z. et al. Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3. Nature 472, 234–237 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hu, H. et al. Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP. Genes Dev. 25, 901–906 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Shuaib, M., Ouararhni, K., Dimitrov, S. & Hamiche, A. HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc. Natl Acad. Sci. USA 107, 1349–1354 (2010).

    CAS  PubMed  Google Scholar 

  107. Bassett, E. A. et al. HJURP uses distinct CENP-A surfaces to recognize and to stabilize CENP-A/histone H4 for centromere assembly. Dev. Cell 22, 749–762 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sanchez-Pulido, L., Pidoux, A. L., Ponting, C. P. & Allshire, R. C. Common ancestry of the CENP-A chaperones Scm3 and HJURP. Cell 137, 1173–1174 (2009).

    PubMed  PubMed Central  Google Scholar 

  109. Fujita, Y. et al. Priming of centromere for CENP-A recruitment by human hMis18α, hMis18β, and M18BP1. Dev. Cell 12, 17–30 (2007).

    CAS  PubMed  Google Scholar 

  110. Maddox, P. S., Hyndman, F., Monen, J., Oegema, K. & Desai, A. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 176, 757–763 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118, 715–729 (2004). References 109–111 report the discovery of the components of the MIS18 complex, which is crucial for CENP-A deposition.

    CAS  PubMed  Google Scholar 

  112. Erhardt, S. et al. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J. Cell Biol. 183, 805–818 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen, C. C. et al. CAL1 is the Drosophila CENP-A assembly factor. J. Cell Biol. 204, 313–329 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Dambacher, S. et al. CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus 3, 101–110 (2012).

    PubMed  PubMed Central  Google Scholar 

  115. Moree, B., Meyer, C. B., Fuller, C. J. & Straight, A. F. CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J. Cell Biol. 194, 855–871 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. McKinley, K. L. & Cheeseman, I. M. Polo-like kinase 1 licenses CENP-A deposition at centromeres. Cell 158, 397–411 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Tachiwana, H. et al. HJURP involvement in de novo CenH3CENP-A and CENP-C recruitment. Cell Rep. 11, 22–32 (2015).

    CAS  PubMed  Google Scholar 

  118. Perpelescu, M., Nozaki, N., Obuse, C., Yang, H. & Yoda, K. Active establishment of centromeric CENP-A chromatin by RSF complex. J. Cell Biol. 185, 397–407 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lagana, A. et al. A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A. Nat. Cell Biol. 12, 1186–1193 (2010).

    CAS  PubMed  Google Scholar 

  120. Akiyoshi, B. & Gull, K. Discovery of unconventional kinetochores in kinetoplastids. Cell 156, 1247–1258 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Drinnenberg, I. A., deYoung, D., Henikoff, S. & Malik, H. S. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife 3, e03676 (2014).

    PubMed Central  Google Scholar 

  122. Bodor, D. L. et al. The quantitative architecture of centromeric chromatin. eLife 3, e02137 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. Lima-de-Faria, A. Genetics, origin, and evolution of kinetochores. Hereditas 35, 422–444 (1949).

    Google Scholar 

  124. Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    CAS  PubMed  Google Scholar 

  125. Rice, J. C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12, 1591–1598 (2003).

    CAS  PubMed  Google Scholar 

  126. Shang, W. H. et al. Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev. Cell 24, 635–648 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Alonso, A., Hasson, D., Cheung, F. & Warburton, P. E. A paucity of heterochromatin at functional human neocentromeres. Epigenetics Chromatin 3, 6 (2010).

    PubMed  PubMed Central  Google Scholar 

  128. Blower, M. D., Sullivan, B. A. & Karpen, G. H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319–330 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Sullivan, B. A. & Karpen, G. H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol. 11, 1076–1083 (2004). This paper provides clear evidence for two distinct chromatin signatures within the centromere, demonstrating that the core centromere contains euchromatic marks, including H3K4me2, and lacks the heterochromatic marks of the pericentromere.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ribeiro, S. A. et al. A super-resolution map of the vertebrate kinetochore. Proc. Natl Acad. Sci. USA 107, 10484–10489 (2010).

    CAS  PubMed  Google Scholar 

  131. Nakano, M. et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell 14, 507–522 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Folco, H. D., Pidoux, A. L., Urano, T. & Allshire, R. C. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319, 94–97 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Choi, E. S. et al. Identification of noncoding transcripts from within CENP-A chromatin at fission yeast centromeres. J. Biol. Chem. 286, 23600–23607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Rosic, S., Kohler, F. & Erhardt, S. Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J. Cell Biol. 207, 335–349 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Chan, F. L. et al. Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc. Natl Acad. Sci. USA 109, 1979–1984 (2012).

    CAS  PubMed  Google Scholar 

  136. Liu, H. et al. Mitotic transcription installs Sgo1 at centromeres to coordinate chromosome segregation. Mol. Cell 59, 426–436 (2015).

    CAS  PubMed  Google Scholar 

  137. Quenet, D. & Dalal, Y. A long non-coding RNA is required for targeting centromeric protein A to the human centromere. eLife 3, e03254 (2014).

    PubMed  Google Scholar 

  138. Hill, A. & Bloom, K. Genetic manipulation of centromere function. Mol. Cell. Biol. 7, 2397–2405 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Okada, M., Okawa, K., Isobe, T. & Fukagawa, T. CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol. Biol. Cell 20, 3986–3995 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Furuyama, T., Dalal, Y. & Henikoff, S. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc. Natl Acad. Sci. USA 103, 6172–6177 (2006).

    CAS  PubMed  Google Scholar 

  141. Chen, C. C. et al. Establishment of centromeric chromatin by the CENP-A assembly factor CAL1 requires FACT-mediated transcription. Dev. Cell 34, 73–84 (2015).

    PubMed  PubMed Central  Google Scholar 

  142. Kim, I. S. et al. Roles of Mis18α in epigenetic regulation of centromeric chromatin and CENP-A loading. Mol. Cell 46, 260–273 (2012).

    CAS  PubMed  Google Scholar 

  143. Wang, J. et al. Mitotic regulator Mis18β interacts with and specifies the centromeric assembly of molecular chaperone holliday junction recognition protein (HJURP). J. Biol. Chem. 289, 8326–8336 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Perpelescu, M. et al. HJURP is involved in the expansion of centromeric chromatin. Mol. Biol. Cell 26, 2742–2754 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Schuh, M., Lehner, C. F. & Heidmann, S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr. Biol. 17, 237–243 (2007).

    CAS  PubMed  Google Scholar 

  146. Mellone, B. G. et al. Assembly of Drosophila centromeric chromatin proteins during mitosis. PLoS Genet. 7, e1002068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Nechemia-Arbely, Y., Fachinetti, D. & Cleveland, D. W. Replicating centromeric chromatin: spatial and temporal control of CENP-A assembly. Exp. Cell Res. 318, 1353–1360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Silva, M. C. et al. Cdk activity couples epigenetic centromere inheritance to cell cycle progression. Dev. Cell 22, 52–63 (2012).

    CAS  PubMed  Google Scholar 

  149. Muller, S. et al. Phosphorylation and DNA binding of HJURP determine its centromeric recruitment and function in CenH3CENP-A loading. Cell Rep. 8, 190–203 (2014).

    CAS  PubMed  Google Scholar 

  150. Yu, Z. et al. Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Dev. Cell 32, 68–81 (2015).

    PubMed  Google Scholar 

  151. Bell, S. P. & Dutta, A. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333–374 (2002).

    CAS  PubMed  Google Scholar 

  152. Collins, K. A., Furuyama, S. & Biggins, S. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr. Biol. 14, 1968–1972 (2004).

    CAS  PubMed  Google Scholar 

  153. Deyter, G. M. & Biggins, S. The FACT complex interacts with the E3 ubiquitin ligase Psh1 to prevent ectopic localization of CENP-A. Genes Dev. 28, 1815–1826 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kitagawa, T., Ishii, K., Takeda, K. & Matsumoto, T. The 19S proteasome subunit Rpt3 regulates distribution of CENP-A by associating with centromeric chromatin. Nat. Commun. 5, 3597 (2014).

    PubMed  Google Scholar 

  155. Spence, J. M. et al. Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X α-satellite array. EMBO J. 21, 5269–5280 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Zeng, K. et al. Localisation of centromeric proteins to a fraction of mouse minor satellite DNA on a mini-chromosome in human, mouse and chicken cells. Chromosoma 113, 84–91 (2004).

    CAS  PubMed  Google Scholar 

  157. Sullivan, L. L., Boivin, C. D., Mravinac, B., Song, I. Y. & Sullivan, B. A. Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosome Res. 19, 457–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Lo, A. W. et al. A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res. 11, 448–457 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Gascoigne, K. E. et al. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145, 410–422 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Schittenhelm, R. B., Althoff, F., Heidmann, S. & Lehner, C. F. Detrimental incorporation of excess Cenp-A/Cid and Cenp-C into Drosophila centromeres is prevented by limiting amounts of the bridging factor Cal1. J. Cell Sci. 123, 3768–3779 (2010).

    CAS  PubMed  Google Scholar 

  161. Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore–microtubule interface. Nat. Rev. Mol. Cell Biol. 9, 33–46 (2008).

    CAS  PubMed  Google Scholar 

  162. Foltz, D. R. et al. The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 8, 458–469 (2006).

    CAS  PubMed  Google Scholar 

  163. Okada, M. et al. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 8, 446–457 (2006).

    CAS  PubMed  Google Scholar 

  164. Izuta, H. et al. Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11, 673–684 (2006). References 162–164 report the identification of the majority of the components of the human CCAN by mass spectrometry analysis.

    CAS  PubMed  Google Scholar 

  165. Amano, M. et al. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J. Cell Biol. 186, 173–182 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Saitoh, H. et al. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70, 115–125 (1992).

    CAS  PubMed  Google Scholar 

  167. Nishihashi, A. et al. CENP-I is essential for centromere function in vertebrate cells. Dev. Cell 2, 463–476 (2002).

    CAS  PubMed  Google Scholar 

  168. Takahashi, K., Yamada, H. & Yanagida, M. Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol. Biol. Cell 5, 1145–1158 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Minoshima, Y. et al. The constitutive centromere component CENP-50 is required for recovery from spindle damage. Mol. Cell. Biol. 25, 10315–10328 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Sugata, N., Munekata, E. & Todokoro, K. Characterization of a novel kinetochore protein, CENP-H. J. Biol. Chem. 274, 27343–27346 (1999).

    CAS  PubMed  Google Scholar 

  171. Hinshaw, S. M. & Harrison, S. C. An Iml3-Chl4 heterodimer links the core centromere to factors required for accurate chromosome segregation. Cell Rep. 5, 29–36 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Basilico, F. et al. The pseudo GTPase CENP-M drives human kinetochore assembly. eLife 3, e02978 (2014).

    PubMed  PubMed Central  Google Scholar 

  173. Hornung, P. et al. A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. J. Cell Biol. 206, 509–524 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Hori, T., Okada, M., Maenaka, K. & Fukagawa, T. CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol. Biol. Cell 19, 843–854 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Nishino, T. et al. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148, 487–501 (2012). This work reveals that the histone-fold domains of the kinetochore proteins CENP-T, -W, -S and -X form a complex that resembles the arrangement of histones in a nucleosome.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Westermann, S. & Schleiffer, A. Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans. Trends Cell Biol. 23, 260–269 (2013).

    CAS  PubMed  Google Scholar 

  177. Schleiffer, A. et al. CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat. Cell Biol. 14, 604–613 (2012). In this paper, the authors identify the long-elusive yeast homologues of numerous CCAN components.

    CAS  PubMed  Google Scholar 

  178. Ortiz, J., Stemmann, O., Rank, S. & Lechner, J. A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev. 13, 1140–1155 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17, 2902–2921 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Kagawa, N. et al. The CENP-O complex requirement varies among different cell types. Chromosome Res. 22, 293–303 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Klare, K. et al. CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores. J. Cell Biol. 210, 11–22 (2015).

    CAS  PubMed  Google Scholar 

  182. Nagpal, H. et al. Dynamic changes in the CCAN organization through CENP-C during cell-cycle progression. Mol. Biol. Cell 26, 3768–3776 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. McKinley, K. L. et al. The CENP-L-N complex forms a critical node in an integrated meshwork of interactions at the centromere-kinetochore interface. Mol. Cell http://dx.doi.org/10.1016/j.molcel.2015.10.027 (2015).

  184. Kwon, M. S., Hori, T., Okada, M. & Fukagawa, T. CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol. Biol. Cell 18, 2155–2168 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Sugimoto, K., Yata, H., Muro, Y. & Himeno, M. Human centromere protein C (CENP-C) is a DNA-binding protein which possesses a novel DNA-binding motif. J. Biochem. 116, 877–881 (1994).

    CAS  PubMed  Google Scholar 

  186. Hori, T. et al. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135, 1039–1052 (2008).

    CAS  PubMed  Google Scholar 

  187. Takeuchi, K. et al. The centromeric nucleosome-like CENP-T-W-S-X complex induces positive supercoils into DNA. Nucleic Acids Res. 42, 1644–1655 (2014).

    CAS  PubMed  Google Scholar 

  188. Screpanti, E. et al. Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr. Biol. 21, 391–398 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Przewloka, M. R. et al. CENP-C is a structural platform for kinetochore assembly. Curr. Biol. 21, 399–405 (2011).

    CAS  PubMed  Google Scholar 

  190. Malvezzi, F. et al. A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J. 32, 409–423 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Nishino, T. et al. CENP-T provides a structural platform for outer kinetochore assembly. EMBO J. 32, 424–436 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Hori, T., Shang, W. H., Takeuchi, K. & Fukagawa, T. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol. 200, 45–60 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Kim, S. & Yu, H. Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J. Cell Biol. 208, 181–196 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Gascoigne, K. E. & Cheeseman, I. M. CDK-dependent phosphorylation and nuclear exclusion coordinately control kinetochore assembly state. J. Cell Biol. 201, 23–32 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Rago, F., Gascoigne, K. E. & Cheeseman, I. M. Distinct organization and regulation of the outer kinetochore KMN network downstream of CENP-C and CENP-T. Curr. Biol. 25, 671–677 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Suzuki, A., Badger, B. L., Wan, X., DeLuca, J. G. & Salmon, E. D. The architecture of CCAN proteins creates a structural integrity to resist spindle forces and achieve proper intrakinetochore stretch. Dev. Cell 30, 717–730 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Amaro, A. C. et al. Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nat. Cell Biol. 12, 319–329 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Bancroft, J., Auckland, P., Samora, C. P. & McAinsh, A. D. Chromosome congression is promoted by CENP-Q- and CENP-E-dependent pathways. J. Cell Sci. 128, 171–184 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Steiner, N. C. & Clarke, L. A novel epigenetic effect can alter centromere function in fission yeast. Cell 79, 865–874 (1994).

    CAS  PubMed  Google Scholar 

  200. Higgins, A. W., Gustashaw, K. M. & Willard, H. F. Engineered human dicentric chromosomes show centromere plasticity. Chromosome Res. 13, 745–762 (2005).

    CAS  PubMed  Google Scholar 

  201. Sato, H., Masuda, F., Takayama, Y., Takahashi, K. & Saitoh, S. Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. Curr. Biol. 22, 658–667 (2012).

    CAS  PubMed  Google Scholar 

  202. Sullivan, B. A. & Schwartz, S. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum. Mol. Genet. 4, 2189–2197 (1995).

    CAS  PubMed  Google Scholar 

  203. Lange, J. et al. Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell 138, 855–869 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Tyler-Smith, C. et al. Transmission of a fully functional human neocentromere through three generations. Am. J. Hum. Genet. 64, 1440–1444 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Amor, D. J. et al. Human centromere repositioning “in progress”. Proc. Natl Acad. Sci. USA 101, 6542–6547 (2004). This paper reports a chromosome from a human patient containing a neocentromere that lacks α-satellite DNA, as well as a second site containing canonical centromeric α-satellite DNA without centromere function, providing a model for how centromere repositioning over evolutionary time may occur.

    CAS  PubMed  Google Scholar 

  206. Williams, B. C., Murphy, T. D., Goldberg, M. L. & Karpen, G. H. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat. Genet. 18, 30–37 (1998).

    CAS  PubMed  Google Scholar 

  207. Platero, J. S., Ahmad, K. & Henikoff, S. A distal heterochromatic block displays centromeric activity when detached from a natural centromere. Mol. Cell 4, 995–1004 (1999).

    CAS  PubMed  Google Scholar 

  208. Ketel, C. et al. Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLoS Genet. 5, e1000400 (2009).

    PubMed  PubMed Central  Google Scholar 

  209. Ishii, K. et al. Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321, 1088–1091 (2008).

    CAS  PubMed  Google Scholar 

  210. Milks, K. J., Moree, B. & Straight, A. F. Dissection of CENP-C-directed centromere and kinetochore assembly. Mol. Biol. Cell 20, 4246–4255 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Dunleavy, E. M. et al. The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C. PLoS Biol. 10, e1001460 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Raychaudhuri, N. et al. Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-A presence in Drosophila sperm. PLoS Biol. 10, e1001434 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Gassmann, R. et al. An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature 484, 534–537 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Schubert, V., Lermontova, I. & Schubert, I. Loading of the centromeric histone H3 variant during meiosis — how does it differ from mitosis? Chromosoma 123, 491–497 (2014).

    CAS  PubMed  Google Scholar 

  215. Kline-Smith, S. L., Khodjakov, A., Hergert, P. & Walczak, C. E. Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol. Biol. Cell 15, 1146–1159 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Schueler, M. G., Higgins, A. W., Rudd, M. K., Gustashaw, K. & Willard, H. F. Genomic and genetic definition of a functional human centromere. Science 294, 109–115 (2001).

    CAS  PubMed  Google Scholar 

  217. Zasadzinska, E., Barnhart-Dailey, M. C., Kuich, P. H. & Foltz, D. R. Dimerization of the CENP-A assembly factor HJURP is required for centromeric nucleosome deposition. EMBO J. 32, 2113–2124 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Niikura, Y. et al. CENP-A K124 ubiquitylation is required for CENP-A deposition at the centromere. Dev. Cell 32, 589–603 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Bui, M. et al. Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo. Cell 150, 317–326 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Zeitlin, S. G., Shelby, R. D. & Sullivan, K. F. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J. Cell Biol. 155, 1147–1157 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Bailey, A. O. et al. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proc. Natl Acad. Sci. USA 110, 11827–11832 (2013).

    CAS  PubMed  Google Scholar 

  222. Hori, T. et al. Histone H4 Lys 20 monomethylation of the CENP-A nucleosome is essential for kinetochore assembly. Dev. Cell 29, 740–749 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to those colleagues whose work they were unable to describe owing to space constraints. They thank members of the Cheeseman laboratory for critical reading of the manuscript and helpful discussions, Bill Earnshaw for directing them to Cyril Darlington's description of the form and function of the centromere, and Conly Rieder, Alexey Khodjakov and Elaine Dunleavy for generously sharing micrographs. Work in the Cheeseman laboratory is supported by a Scholar award to I.M.C. from the Leukemia & Lymphoma Society, a grant from the U.S. National Institutes of Health/National Institute of General Medical Sciences to I.M.C. (GM088313), and a Research Scholar Grant to I.M.C. (121776) from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kara L. McKinley or Iain M. Cheeseman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Related links

Related links

FURTHER INFORMATION

RCSB Protein Data Bank

3AN2

3VH5

Glossary

Meiotic drive

Preferential transmission of a genetic element during meiosis, such that it is represented in more than 50% of the gametes of a heterozygote.

Evolutionary new centromeres

(ENCs). Centromeres at a different site from the centromere of the chromosome ancestor, for which the movement of the centromere cannot be parsimoniously explained by a simple chromosome rearrangement.

Neocentromeres

Regions of chromosomes that have the functional characteristics of a centromere, but occur at a site distinct from the site of centromere formation for the chromosome in most organisms of the species, and lack canonical centromere DNA sequences.

Human artificial chromosomes

(HACs). Units of exogenous DNA that segregate autonomously in human cells.

Histone chaperone

A protein that binds to histones to facilitate nucleosome assembly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKinley, K., Cheeseman, I. The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 17, 16–29 (2016). https://doi.org/10.1038/nrm.2015.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2015.5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing