Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunoglobulin class-switch DNA recombination: induction, targeting and beyond

Key Points

  • T cell-dependent and T cell-independent primary class-switch DNA recombination (CSR)-inducing stimuli induce activation-induced cytidine deaminase (AID) in a B cell differentiation stage-specific manner. AID expression is further enhanced by secondary CSR-inducing stimuli — namely, interleukin-4, transforming growth factor-β and interferon-γ — through interplay between transcription factors.

  • Targeting of the CSR machinery is made possible by the specific richness of 5′-AGCT-3′ repeats in all S regions and the high avidity of 14-3-3 adaptors for such repeats. Targeting is orchestrated by germline IH-S-CH transcription and epigenetic changes in the S regions that are to undergo recombination; these processes are induced by primary and secondary CSR-inducing stimuli.

  • Histone modifications and factors involved in germline IH-S-CH transcription have an important and active role in the recruitment of 14-3-3 adaptors and AID to S region DNA and in the stabilization of these CSR factors.

  • Proper adaptors (such as 14-3-3 proteins and replication protein A), which do not possess enzymatic activity, function as scaffold proteins for other CSR factors. In addition, enzymes (such as REV1) can function as scaffold elements in CSR.

  • Scaffold proteins that can directly interact with modified histones transduce crucial epigenetic information to AID and other enzymatic effectors of CSR.

Abstract

Class-switch DNA recombination (CSR) of the immunoglobulin heavy chain (IGH) locus is central to the maturation of the antibody response and crucially requires the cytidine deaminase AID. CSR involves changes in the chromatin state and the transcriptional activation of the IGH locus at the upstream and downstream switch (S) regions that are to undergo S–S DNA recombination. In addition, CSR involves the induction of AID expression and the targeting of CSR factors to S regions by 14-3-3 adaptors, and it is facilitated by the transcription machinery and by histone modifications. In this Review, we focus on recent advances regarding the induction and targeting of CSR and outline an integrated model of the assembly of macromolecular complexes that transduce crucial epigenetic information to enzymatic effectors of the CSR machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CSR entails DNA deletion.
Figure 2: Enzymes and scaffold elements in CSR.
Figure 3: CSR-inducing stimuli and the interplay of transcription factors.
Figure 4: Targeting of the CSR machinery.

Similar content being viewed by others

References

  1. Casadevall, A. & Pirofski, L. A. A new synthesis for antibody-mediated immunity. Nature Immunol. 13, 21–28 (2011).

    Article  CAS  Google Scholar 

  2. Wingren, C., Hansson, U.-B. & Alkner, U. in Van Nostrand's Scientific Encyclopedia (ed. Considine, G. D.) (Wiley-Interscience, 2007).

    Google Scholar 

  3. Mond, J. J., Lees, A. & Snapper, C. M. T cell-independent antigens type 2. Annu. Rev. Immunol. 13, 655–692 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Gould, H. J. & Sutton, B. J. IgE in allergy and asthma today. Nature Rev. Immunol. 8, 205–217 (2008).

    Article  CAS  Google Scholar 

  5. Cerutti, A., Chen, K. & Chorny, A. Immunoglobulin responses at the mucosal interface. Annu. Rev. Immunol. 29, 273–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stavnezer, J., Guikema, J. E. & Schrader, C. E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292 (2008). A comprehensive review of the molecular mechanisms of CSR.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Honjo, T. A memoir of AID, which engraves antibody memory on DNA. Nature Immunol. 9, 335–337 (2008).

    Article  CAS  Google Scholar 

  8. Liu, W., Meckel, T., Tolar, P., Sohn, H. W. & Pierce, S. K. Intrinsic properties of immunoglobulin IgG1 isotype-switched B cell receptors promote microclustering and the initiation of signaling. Immunity 32, 778–789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Casali, P. in Lewin's Genes X (eds Krebs, J. E., Goldstein, E. S. & Kilpatrick, S. T.) 570–623 (Jones & Bartlett, 2009).

    Google Scholar 

  10. Goodnow, C. C., Vinuesa, C. G., Randall, K. L., Mackay, F. & Brink, R. Control systems and decision making for antibody production. Nature Immunol. 11, 681–688 (2010).

    Article  CAS  Google Scholar 

  11. Casadevall, A., Dadachova, E. & Pirofski, L. A. Passive antibody therapy for infectious diseases. Nature Rev. Microbiol. 2, 695–703 (2004).

    Article  CAS  Google Scholar 

  12. Pulendran, B. & Ahmed, R. Translating innate immunity into immunological memory: implications for vaccine development. Cell 124, 849–863 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Plotkin, S. A. Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis. 47, 401–409 (2008).

    Article  PubMed  Google Scholar 

  14. Delker, R. K., Fugmann, S. D. & Papavasiliou, F. N. A coming-of-age story: activation-induced cytidine deaminase turns 10. Nature Immunol. 10, 1147–1153 (2009).

    Article  CAS  Google Scholar 

  15. Maul, R. W. et al. Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions. Nature Immunol. 12, 70–76 (2011).

    Article  CAS  Google Scholar 

  16. Zan, H. & Casali, P. AID- and Ung-dependent generation of staggered double-strand DNA breaks in immunoglobulin class switch DNA recombination: a post-cleavage role for AID. Mol. Immunol. 46, 45–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zan, H. et al. Endonuclease G plays a role in immunoglobulin class switch DNA recombination by introducing double-strand breaks in switch regions. Mol. Immunol. 48, 610–622 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi, M. et al. AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination. Proc. Natl Acad. Sci. USA 106, 22375–22380 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stavnezer, J. Complex regulation and function of activation-induced cytidine deaminase. Trends Immunol. 32, 194–201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rada, C., Di Noia, J. M. & Neuberger, M. S. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol. Cell 16, 163–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Min, I. M. et al. The Sμ tandem repeat region is critical for Ig isotype switching in the absence of Msh2. Immunity 19, 515–524 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee-Theilen, M., Matthews, A. J., Kelly, D., Zheng, S. & Chaudhuri, J. CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nature Struct. Mol. Biol. 18, 75–79 (2011).

    Article  CAS  Google Scholar 

  24. Robert, I., Dantzer, F. & Reina-San-Martin, B. Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J. Exp. Med. 206, 1047–1056 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eccleston, J., Yan, C., Yuan, K., Alt, F. W. & Selsing, E. Mismatch repair proteins MSH2, MLH1, and EXO1 are important for class-switch recombination events occurring in B cells that lack nonhomologous end joining. J. Immunol. 186, 2336–2343 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Klein, U. & Dalla-Favera, R. Germinal centres: role in B-cell physiology and malignancy. Nature Rev. Immunol. 8, 22–33 (2008).

    Article  CAS  Google Scholar 

  27. McHeyzer-Williams, M., Okitsu, S., Wang, N. & McHeyzer-Williams, L. Molecular programming of B cell memory. Nature Rev. Immunol. 12, 24–34 (2012). References 26 and 27 provide comprehensive reviews of B cell differentiation processes.

    Article  CAS  Google Scholar 

  28. Park, S. R. et al. HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation. Nature Immunol. 10, 540–550 (2009). This study outlines the AID gene promoter structure and identifies important transcription factors that regulate AID induction.

    Article  CAS  Google Scholar 

  29. Pone, E. J. et al. Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: relevance to microbial antibody responses. Crit. Rev. Immunol. 30, 1–29 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Casanova, J. L., Abel, L. & Quintana-Murci, L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 29, 447–491 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Barton, G. M. & Kagan, J. C. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature Rev. Immunol. 9, 535–542 (2009).

    Article  CAS  Google Scholar 

  32. He, B. et al. The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nature Immunol. 11, 836–845 (2010).

    Article  CAS  Google Scholar 

  33. Pone, E. J. et al. BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-κB pathway. Nature Commun. 3, 767 (2012).

    Article  CAS  Google Scholar 

  34. Rawlings, D. J., Schwartz, M. A., Jackson, S. W. & Meyer-Bahlburg, A. Integration of B cell responses through Toll-like receptors and antigen receptors. Nature Rev. Immunol. 12, 282–294 (2012). References 33 and 34 outline the crucial role of BCR signalling in enabling TLRs to efficiently induce T cell-independent CSR and B cell responses.

    Article  CAS  Google Scholar 

  35. Wesemann, D. R. et al. Immature B cells preferentially switch to IgE with increased direct Sμ to Sɛ recombination. J. Exp. Med. 208, 2733–2746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fritz, E. L. & Papavasiliou, F. N. Cytidine deaminases: AIDing DNA demethylation? Genes Dev. 24, 2107–2114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhutani, N., Burns, D. M. & Blau, H. M. DNA demethylation dynamics. Cell 146, 866–872 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo, J. U., Su, Y., Zhong, C., Ming, G. L. & Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pasqualucci, L. et al. AID is required for germinal center-derived lymphomagenesis. Nature Genet. 40, 108–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Robbiani, D. F. et al. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol. Cell 36, 631–641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hasham, M. G. et al. Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination. Nature Immunol. 11, 820–826 (2010).

    Article  CAS  Google Scholar 

  42. Xu, Z. et al. Regulation of aicda expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination. Crit. Rev. Immunol. 27, 367–397 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hasler, J., Rada, C. & Neuberger, M. S. Cytoplasmic activation-induced cytidine deaminase (AID) exists in stoichiometric complex with translation elongation factor 1α (eEF1A). Proc. Natl Acad. Sci. USA 108, 18366–18371 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aoufouchi, S. et al. Proteasomal degradation restricts the nuclear lifespan of AID. J. Exp. Med. 205, 1357–1368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Uchimura, Y., Barton, L. F., Rada, C. & Neuberger, M. S. REG-γ associates with and modulates the abundance of nuclear activation-induced deaminase. J. Exp. Med. 208, 2385–2891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, G. et al. Iron inhibits activation-induced cytidine deaminase enzymatic activity and modulates immunoglobulin class switch DNA recombination. J. Biol. Chem. 3 May 2012 (doi:10.1074/jbc.M112.366732).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. He, B., Qiao, X. & Cerutti, A. CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J. Immunol. 173, 4479–4491 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Zarnegar, B. et al. Unique CD40-mediated biological program in B cell activation requires both type 1 and type 2 NF-κB activation pathways. Proc. Natl Acad. Sci. USA 101, 8108–8113 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tran, T. H. et al. B cell-specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nature Immunol. 11, 148–154 (2010).

    Article  CAS  Google Scholar 

  50. Smale, S. T. Hierarchies of NF-κB target-gene regulation. Nature Immunol. 12, 689–694 (2011).

    Article  CAS  Google Scholar 

  51. Baltimore, D. NF-κB is 25. Nature Immunol. 12, 683–685 (2011).

    Article  CAS  Google Scholar 

  52. Pauklin, S., Sernandez, I. V., Bachmann, G., Ramiro, A. R. & Petersen-Mahrt, S. K. Estrogen directly activates AID transcription and function. J. Exp. Med. 206, 99–111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mai, T. et al. Estrogen receptors bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated activation-induced cytosine deaminase induction, immunoglobulin class switch DNA recombination, and somatic hypermutation. J. Biol. Chem. 285, 37797–37810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. White, C. A. et al. AID dysregulation in lupus-prone MRL/Faslpr/lpr mice increases class switch DNA recombination and promotes interchromosomal c-Myc/IgH loci translocations: modulation by HoxC4. Autoimmunity 44, 585–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sayegh, C. E., Quong, M. W., Agata, Y. & Murre, C. E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nature Immunol. 4, 586–593 (2003).

    Article  CAS  Google Scholar 

  56. Ise, W. et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nature Immunol. 12, 536–543 (2011).

    Article  CAS  Google Scholar 

  57. Betz, B. C. et al. Batf coordinates multiple aspects of B and T cell function required for normal antibody responses. J. Exp. Med. 207, 933–942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cerutti, A. & Rescigno, M. The biology of intestinal immunoglobulin A responses. Immunity 28, 740–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fagarasan, S., Kawamoto, S., Kanagawa, O. & Suzuki, K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol. 28, 243–273 (2010). References 58 and 59 are comprehensive reviews of T cell-dependent and T cell-independent class switching to IgA in mucosal antibody responses.

    Article  CAS  PubMed  Google Scholar 

  60. Daniel, J. A. et al. PTIP promotes chromatin changes critical for immunoglobulin class switch recombination. Science 329, 917–923 (2010). This study showed that inhibition of changes to chromatin accessibility results in CSR impairment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu, K., Chedin, F., Hsieh, C. L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nature Immunol. 4, 442–451 (2003).

    Article  CAS  Google Scholar 

  62. Chaudhuri, J. & Alt, F. W. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nature Rev. Immunol. 4, 541–552 (2004). An overview of the role of germline I H -S-C H transcription in regulating AID activity and CSR.

    Article  CAS  Google Scholar 

  63. Basu, U. et al. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 144, 353–363 (2011). This study provides important insights into the mechanisms that enable AID-mediated deamination of deoxycytosines on both DNA strands.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sellars, M., Reina-San-Martin, B., Kastner, P. & Chan, S. Ikaros controls isotype selection during immunoglobulin class switch recombination. J. Exp. Med. 206, 1073–1087 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Perlot, T. & Alt, F. W. Cis-regulatory elements and epigenetic changes control genomic rearrangements of the IgH locus. Adv. Immunol. 99, 1–32 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dunnick, W. A. et al. Switch recombination and somatic hypermutation are controlled by the heavy chain 3′ enhancer region. J. Exp. Med. 206, 2613–2623 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim, E. C., Edmonston, C. R., Wu, X., Schaffer, A. & Casali, P. The HoxC4 homeodomain protein mediates activation of the immunoglobulin heavy chain 3′ hs1,2 enhancer in human B cells. Relevance to class switch DNA recombination. J. Biol. Chem. 279, 42258–42269 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Wuerffel, R. et al. S–S synapsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase. Immunity 27, 711–722 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hackney, J. A. et al. DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination. Adv. Immunol. 101, 163–189 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Xu, Z. et al. 14-3-3 adaptor proteins recruit AID to 5′-AGCT-3′-rich switch regions for class switch recombination. Nature Struct. Mol. Biol. 17, 1124–1135 (2010). This study has identified 14-3-3 proteins as adaptors that specifically target S region core 5′-AGCT-3′ repeats and recruit AID.

    Article  CAS  Google Scholar 

  71. Zarrin, A. A. et al. An evolutionarily conserved target motif for immunoglobulin class-switch recombination. Nature Immunol. 5, 1275–1281 (2004).

    Article  CAS  Google Scholar 

  72. Han, L., Masani, S. & Yu, K. Overlapping activation-induced cytidine deaminase hotspot motifs in Ig class-switch recombination. Proc. Natl Acad. Sci. USA 108, 11584–11589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang, F. T. et al. Sequence dependence of chromosomal R-loops at the immunoglobulin heavy-chain Sμ class switch region. Mol. Cell. Biol. 27, 5921–5932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morrison, D. K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 19, 16–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Vuong, B. Q. et al. Specific recruitment of protein kinase A to the immunoglobulin locus regulates class-switch recombination. Nature Immunol. 10, 420–426 (2009).

    Article  CAS  Google Scholar 

  76. Barreto, V., Reina-San-Martin, B., Ramiro, A. R., McBride, K. M. & Nussenzweig, M. C. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol. Cell 12, 501–508 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Shinkura, R. et al. Separate domains of AID are required for somatic hypermutation and class-switch recombination. Nature Immunol. 5, 707–712 (2004).

    Article  CAS  Google Scholar 

  78. Ranjit, S. et al. AID binds cooperatively with UNG and Msh2–Msh6 to Ig switch regions dependent upon the AID C terminus. J. Immunol. 187, 2464–2475 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Geisberger, R., Rada, C. & Neuberger, M. S. The stability of AID and its function in class-switching are critically sensitive to the identity of its nuclear-export sequence. Proc. Natl Acad. Sci. USA 106, 6736–6741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nambu, Y. et al. Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 302, 2137–2140 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Shen, H. M. et al. The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription. J. Exp. Med. 206, 1057–1071 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Conticello, S. G. et al. Interaction between antibody-diversification enzyme AID and spliceosome-associated factor CTNNBL1. Mol. Cell 31, 474–484 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Pavri, R. et al. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143, 122–133 (2010). This study has demonstrated that AID is associated with RNA polymerase II through SPT5 on S regions and on the promoters of certain non-immunoglobulin genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Okazaki, I. M. et al. Histone chaperone Spt6 is required for class switch recombination but not somatic hypermutation. Proc. Natl Acad. Sci. USA 108, 7920–7925 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nowak, U., Matthews, A. J., Zheng, S. & Chaudhuri, J. The splicing regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding of AID to switch-region DNA. Nature Immunol. 12, 160–166 (2011).

    Article  CAS  Google Scholar 

  86. Wang, L., Wuerffel, R., Feldman, S., Khamlichi, A. A. & Kenter, A. L. S region sequence, RNA polymerase II, and histone modifications create chromatin accessibility during class switch recombination. J. Exp. Med. 206, 1817–1830 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rajagopal, D. et al. Immunoglobulin switch μ sequence causes RNA polymerase II accumulation and reduces dA hypermutation. J. Exp. Med. 206, 1237–1244 (2009). References 86 and 87 have demonstrated that RNA polymerase II and active histone modifications are highly enriched in S regions that will undergo recombination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yamane, A. et al. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nature Immunol. 12, 62–69 (2011).

    Article  CAS  Google Scholar 

  89. Peters, A. & Storb, U. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4, 57–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, M. et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451, 841–845 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Staszewski, O. et al. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig loci in activated B cells. Mol. Cell 41, 232–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hakim, O. et al. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature 484, 69–74 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Klein, I. A. et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147, 95–106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chiarle, R. et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107–119 (2011). References 88–94 have demonstrated that AID can bind to non-immunoglobulin loci, albeit less efficiently than to S regions, and cause genome-wide DNA deamination, DSB generation and translocations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tafvizi, A., Huang, F., Fersht, A. R., Mirny, L. A. & van Oijen, A. M. A single-molecule characterization of p53 search on DNA. Proc. Natl Acad. Sci. USA 108, 563–568 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Good, M. C., Zalatan, J. G. & Lim, W. A. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332, 680–686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chaudhuri, J., Khuong, C. & Alt, F. W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430, 992–998 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Otterlei, M. et al. Post-replicative base excision repair in replication foci. EMBO J. 18, 3834–3844 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guo, S. et al. Regulation of replication protein A functions in DNA mismatch repair by phosphorylation. J. Biol. Chem. 281, 21607–21616 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Oakley, G. G. et al. Physical interaction between replication protein A (RPA) and MRN: involvement of RPA2 phosphorylation and the N-terminus of RPA1. Biochemistry 48, 7473–7481 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Shao, R.-G. et al. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J. 18, 1397–1406 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yoo, E. et al. 53BP1 is associated with replication protein A and is required for RPA2 hyperphosphorylation following DNA damage. Oncogene 24, 5423–5430 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Block, W. D., Yu, Y. & Lees-Miller, S. P. Phosphatidyl inositol 3-kinase-like serine/threonine protein kinases (PIKKs) are required for DNA damage-induced phosphorylation of the 32 kDa subunit of replication protein A at threonine 21. Nucleic Acids Res. 32, 997–1005 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Begum, N. A. et al. Further evidence for involvement of a noncanonical function of uracil DNA glycosylase in class switch recombination. Proc. Natl Acad. Sci. USA 106, 2752–2757 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kracker, S. et al. Impaired induction of DNA lesions during immunoglobulin class-switch recombination in humans influences end-joining repair. Proc. Natl Acad. Sci. USA 107, 22225–22230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Doi, T. et al. The C-terminal region of activation-induced cytidine deaminase is responsible for a recombination function other than DNA cleavage in class switch recombination. Proc. Natl Acad. Sci. USA 106, 2758–2763 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jansen, J. G. et al. Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice. J. Exp. Med. 203, 319–323 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Masuda, K. et al. A critical role for REV1 in regulating the induction of C:G transitions and A:T mutations during Ig gene hypermutation. J. Immunol. 183, 1846–1850 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, L., Whang, N., Wuerffel, R. & Kenter, A. L. AID-dependent histone acetylation is detected in immunoglobulin S regions. J. Exp. Med. 203, 215–226 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chowdhury, M. et al. Analysis of intergenic transcription and histone modification across the human immunoglobulin heavy-chain locus. Proc. Natl Acad. Sci. USA 105, 15872–15877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kuang, F. L., Luo, Z. & Scharff, M. D. H3 trimethyl K9 and H3 acetyl K9 chromatin modifications are associated with class switch recombination. Proc. Natl Acad. Sci. USA 106, 5288–5293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stanlie, A., Aida, M., Muramatsu, M., Honjo, T. & Begum, N. A. Histone3 lysine4 trimethylation regulated by the facilitates chromatin transcription complex is critical for DNA cleavage in class switch recombination. Proc. Natl Acad. Sci. USA 107, 22190–22195 (2010). This study has shown that inhibition of H3K4me3 results in CSR impairment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Gardner, K. E., Allis, C. D. & Strahl, B. D. Operating on chromatin, a colorful language where context matters. J. Mol. Biol. 409, 36–46 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jeevan-Raj, B. P. et al. Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. J. Exp. Med. 208, 1649–1660 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Macdonald, N. et al. Molecular basis for the recognition of phosphorylated and phosphoacetylated histone H3 by 14-3-3. Mol. Cell 20, 199–211 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Zippo, A. et al. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138, 1122–1136 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Schatz, D. G. & Ji, Y. Recombination centres and the orchestration of V(D)J recombination. Nature Rev. Immunol. 11, 251–263 (2011). A comprehensive review on the epigenetic regulation of V(D)J recombination.

    Article  CAS  Google Scholar 

  119. Orthwein, A. et al. Regulation of activation-induced deaminase stability and antibody gene diversification by Hsp90. J. Exp. Med. 207, 2751–2765 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Saribasak, H. et al. XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes. J. Exp. Med. 208, 2209–2216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Boboila, C. et al. Robust chromosomal DNA repair via alternative end-joining in the absence of X-ray repair cross-complementing protein 1 (XRCC1). Proc. Natl Acad. Sci. USA 109, 2473–2478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Han, L., Mao, W. & Yu, K. X-ray repair cross-complementing protein 1 (XRCC1) deficiency enhances class switch recombination and is permissive for alternative end joining. Proc. Natl Acad. Sci. USA 109, 4604–4608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bardwell, P. D. et al. Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice. Nature Immunol. 5, 224–229 (2004).

    Article  CAS  Google Scholar 

  124. Vallur, A. C. & Maizels, N. Activities of human exonuclease 1 that promote cleavage of transcribed immunoglobulin switch regions. Proc. Natl Acad. Sci. USA 105, 16508–16512 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wu, X. et al. A role for the MutL mismatch repair Mlh3 protein in immunoglobulin class switch DNA recombination and somatic hypermutation. J. Immunol. 176, 5426–5437 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Manis, J. P. et al. 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nature Immunol. 5, 481–487 (2004).

    Article  CAS  Google Scholar 

  127. Rulten, S. L. et al. PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol. Cell 41, 33–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Franco, S. et al. DNA-PKcs and Artemis function in the end-joining phase of immunoglobulin heavy chain class switch recombination. J. Exp. Med. 205, 557–564 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Du, L. et al. Involvement of Artemis in nonhomologous end-joining during immunoglobulin class switch recombination. J. Exp. Med. 205, 3031–3040 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rivera-Munoz, P. et al. Reduced immunoglobulin class switch recombination in the absence of Artemis. Blood 114, 3601–3609 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Lumsden, J. M. et al. Immunoglobulin class switch recombination is impaired in Atm-deficient mice. J. Exp. Med. 200, 1111–1121 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Reina-San-Martin, B., Chen, H. T., Nussenzweig, A. & Nussenzweig, M. C. ATM is required for efficient recombination between immunoglobulin switch regions. J. Exp. Med. 200, 1103–1110 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pan-Hammarström, Q. et al. Disparate roles of ATR and ATM in immunoglobulin class switch recombination and somatic hypermutation. J. Exp. Med. 203, 99–110 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zha, S. et al. ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks. Nature 469, 250–254 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Du, L. et al. Cernunnos influences human immunoglobulin class switch recombination and may be associated with B cell lymphomagenesis. J. Exp. Med. 209, 291–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Reina-San-Martin, B. et al. H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J. Exp. Med. 197, 1767–1778 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Casellas, R. et al. Ku80 is required for immunoglobulin isotype switching. EMBO J. 17, 2404–2411 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Manis, J. P. et al. Ku70 is required for late B cell development and immunoglobulin heavy chain class switching. J. Exp. Med. 187, 2081–2089 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dinkelmann, M. et al. Multiple functions of MRN in end-joining pathways during isotype class switching. Nature Struct. Mol. Biol. 16, 808–813 (2009).

    Article  CAS  Google Scholar 

  140. Li, L. et al. Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. J. Exp. Med. 207, 983–997 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Santos, M. A. et al. Class switching and meiotic defects in mice lacking the E3 ubiquitin ligase RNF8. J. Exp. Med. 207, 973–981 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ramachandran, S. et al. The RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination. Proc. Natl Acad. Sci. USA 107, 809–814 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Soulas-Sprauel, P. et al. Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination. J. Exp. Med. 204, 1717–1727 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yan, C. T. et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449, 478–482 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize that owing to space limitations only a fraction of the relevant literature was cited. We thank all other members of the Casali laboratory for careful evaluation of this manuscript. Work on class-switch DNA recombination in the Casali laboratory has been supported by US National Institutes of Health grants AI 079705, AI 045011 and AI 060573. T. Mai has been supported by grant T32 CA 009054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Casali.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

5′-AGCT-3′ repeats in S region DNA. (PDF 907 kb)

Glossary

BCR signalling

(B cell receptor signalling). Signals triggered by the binding of an antigen to the membrane-bound immunoglobulin of the BCR complex and the subsequent phosphorylation of the BCR components CD79a and CD79b at their ITAM motifs. This leads to the activation of tyrosine kinases, secondary messengers and signalling pathways (such as the NF-κB and MAPK pathways). BCR signalling is important for diverse B cell processes, including development, survival, activation, proliferation and differentiation.

Hyper-IgM syndrome

(HIGM syndrome). Syndromes characterized by elevated levels of IgM and decreased or absent levels of IgG, IgA and IgE, resulting from the impairment or ablation of class-switch recombination.

Activation-induced cytidine deaminase

(AID). A member of the AID and APOBEC family of cytidine or cytosine deaminases that catalyses the deamination of deoxycytosines to deoxyuracils, thereby initiating immunoglobulin class-switch recombination, somatic hypermutation and gene conversion.

Uracil DNA glycosylase

(UNG). An enzyme that removes uracil bases from DNA by cleaving N-glycosidic bonds and thereby initiates the base excision repair pathway that removes deoxyuracils from the genome.

Base excision repair

(BER). A DNA repair pathway that replaces damaged bases through a multistep process involving the excision of damaged bases by DNA glycosylases, nicking of the abasic sites by apurinic/apyrimidinic endonucleases, filling in of the single-stranded DNA gaps by DNA polymerases (such as DNA polymerase-β) and ligation by DNA ligases.

Mismatch repair

(MMR). A DNA repair system that recognizes and repairs mismatched DNA base pairs that result from DNA damage or from the erroneous insertion, deletion or misincorporation of bases during DNA replication or recombination.

Classical non-homologous end joining

(C-NHEJ). A DNA repair process that joins together non-homologous DNA ends using the four core components KU70, KU86, XRCC4 and DNA ligase IV, and additional components such as DNA-PKcs and Artemis.

Alternative end joining

(A-EJ). A double-strand break (DSB) repair process that occurs in the absence of certain classical non-homologous end joining components and is thought to depend on the MRN complex, CTIP and/or PARP1 to generate a microhomology region between the ends of DSBs for end joining.

Homologous recombination

A DNA recombination mechanism whereby extensive homology between two different DNA regions allows for the annealing of complementary strands from the two different regions. The enzymatic resolution of this hybrid intermediate leads to recombination between the two different DNA regions.

Primary CSR-inducing stimuli

Stimuli that induce the expression of AID, 14-3-3 adaptors and other important class-switch recombination (CSR) factors, thereby enabling CSR. These stimuli are triggered by the engagement of CD40 (a T cell-dependent stimulus) or by dual TLR–BCR, TACI–BCR or TLR–TACI engagement (T cell-independent stimuli). Primary stimuli enable secondary CSR-inducing stimuli to induce germline IH-S-CH transcription and histone modifications in selected switch regions.

Secondary CSR-inducing stimuli

These are cytokines — namely, IL-4 and TGFβ, and IFNγ in mice but not humans — that cannot induce AID but are required for directing switching to IgG, IgA and/or IgE. These stimuli select the acceptor switch region(s) through the induction of germline IH-S-CH transcription and the enrichment of specific histone modifications. They also enhance the expression of AID induced by primary class-switch recombination (CSR)-inducing stimuli.

T cell-dependent antibody responses

Antibody responses to protein antigens that require recognition of the antigen by T helper cells and cooperation between antigen-specific B and T cells. These responses lead to the generation of high-affinity antibodies and long-term memory.

TACI

A TNF receptor family member specific for B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) that activates signalling pathways (such as the NF-κB pathway) through TRAF adaptors.

T cell-independent antibody responses

Antibody responses to certain repetitive microbial constituents that occur in the absence of T cell help.

Chromosomal translocations

Aberrant chromosome structures that result from the breaking and joining of a chromosome (or part of a chromosome) to another chromosome through improper DSB ligation. These translocations frequently occur in cancers.

RNA exosome

A eukaryotic multiprotein complex comprised of a ring-like nine-subunit core (containing six different RNase subunits and three distinct RNA-binding subunits) and three additional subunits with RNase activities. It degrades erroneous RNA molecules, thereby enforcing RNA quality control. It also degrades non-erroneous RNA molecules, thereby maintaining their normal half-life and exposing the DNA strands of transcribed S regions for AID to deaminate.

5′-RGYW-3′ hotspot

A DNA motif that is frequently mutated during somatic hypermutation (SHM) as a result of the intrinsic preference of the SHM machinery for targeting this motif. R represents a purine; Y represents a pyrimidine; and W represents either A or T.

R-loop

A nucleic acid structure in which an RNA strand hybridizes with a complementary strand in a double-stranded DNA molecule and displaces the other DNA strand (which is typically rich in deoxyguanines), thereby forming a loop of up to hundreds of nucleotides.

14-3-3 adaptor proteins

A family of seven evolutionarily conserved and highly homologous adaptor proteins that form homodimers, heterodimers and/or tetramers and bind to a multitude of protein and DNA ligands. 14-3-3 proteins regulate diverse cell homeostasis events, such as signal transduction, survival, cell cycle progression and DNA replication, as well as cell differentiation processes, such as class-switch recombination.

Histone modifications

Post-translational chemical modifications of histones, including methylation, acetylation and phosphorylation. These modifications are inserted by histone-modifying enzymes and can actively mediate specific biological processes by interacting with selected effector proteins, including scaffold proteins that recruit and/or stabilize downstream factors. Histone modifications also determine chromatin accessibilities for DNA replication, repair and recombination.

Scaffold proteins

Multidomain proteins or multisubunit protein oligomers that, by switching the conformation of their ligands, coordinate the spatiotemporal organization of macromolecular complexes. This can bring enzymes into proximity with their substrates and eventually leads to specific biological information outputs.

REV1

A translesion DNA polymerase that bypasses DNA lesions using its dCMP transferase activity to mediate DNA repair. REV1 also possesses scaffold functions to recruit or stabilize other DNA repair factors.

Histone code hypothesis

A hypothesis postulating that distinct histone modifications that act alone, sequentially or combinatorially form a 'histone code' that is read by effector proteins to mediate biological processes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Zan, H., Pone, E. et al. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol 12, 517–531 (2012). https://doi.org/10.1038/nri3216

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing