Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

WASP: a key immunological multitasker

Key Points

  • Wiskott–Aldrich Syndrome protein (WASP) is an important regulator of the actin cytoskeleton in haematopoietic cells. WASP-deficiency gives rise to the human disease Wiskott–Aldrich Syndrome (WAS), an X-linked primary immunodeficiency. Constitutively active mutations of WASP have recently been described to give rise to a distinct human disease: X-linked neutropenia.

  • WASP activity is attenuated by multiple signalling pathways downstream of surface receptors. Conformational change, phosphorylation and degradation are important mechanisms.

  • Although WASP does not seem to have a key role in haematopoiesis, WASP confers selective advantage for many mature haematopoietic cell types and is emerging as a key regulator of lymphocyte homeostasis.

  • WASP is required for a diverse range of cell functions in innate and adaptive immune cells. These relate both to the role of WASP in cytoskelatal rearrangement and as an intrinsic signalling molecule.

  • Autoimmunity is an important feature of WAS which is poorly understood. Recent studies suggest that defective regulatory T cell function is an important component.

  • Insights into the basic mechanisms of WASP-associated disease are advancing our understanding of immune regulation with wider application, and this allows the potential for future therapeutic benefit.

Abstract

The Wiskott–Aldrich syndrome protein (WASP) is an important regulator of the actin cytoskeleton that is required for many haematopoietic and immune cell functions, including effective migration, phagocytosis and immune synapse formation. Loss of WASP activity leads to Wiskott–Aldrich syndrome, an X-linked disease that is associated with defects in a broad range of cellular processes, resulting in complex immunodeficiency, autoimmunity and microthrombocytopenia. Intriguingly, gain of function mutations cause a separate disease that is mainly characterized by neutropenia. Here, we describe recent insights into the cellular mechanisms of these two related, but distinct, human diseases and discuss their wider implications for haematopoiesis, immune function and autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of Wiskott–Aldrich syndrome protein.
Figure 2: Wiskott–Aldrich syndrome protein and lymphocyte homeostasis.
Figure 3: Wiskott–Aldrich syndrome protein function in immune cells.

Similar content being viewed by others

References

  1. Takenawa, T. & Suetsugu, S. The WASP–WAVE protein network: connecting the membrane to the cytoskeleton. Nature Rev. Mol. Cell Biol. 8, 37–48 (2007).

    Article  CAS  Google Scholar 

  2. Kurisu, S. & Takenawa, T. The WASP and WAVE family proteins. Genome Biol. 10, 226 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Symons, M. et al. Wiskott–Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84, 723–734 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Miki, H. & Takenawa, T. Direct binding of the verprolin-homology domain in N-WASP to actin is essential for cytoskeletal reorganization. Biochem. Biophys. Res. Commun. 243, 73–78 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404, 1007–1011 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Huang, W., Ochs, H. D., Dupont, B. & Vyas, Y. M. The Wiskott–Aldrich syndrome protein regulates nuclear translocation of NFAT2 and NF-κB (RelA) independently of its role in filamentous actin polymerization and actin cytoskeletal rearrangement. J. Immunol. 174, 2602–2611 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Silvin, C., Belisle, B. & Abo, A. A role for Wiskott–Aldrich syndrome protein in T-cell receptor-mediated transcriptional activation independent of actin polymerization. J. Biol. Chem. 276, 21450–21457 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Linardopoulou, E. V. et al. Human subtelomeric WASH genes encode a new subclass of the WASP family. PLoS Genet. 3, 2477–2485 (2007).

    Article  CAS  Google Scholar 

  11. Campellone, K. G., Webb, N. J., Znameroski, E. A. & Welch, M. D. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134, 148–161 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sullivan, K. E., Mullen, C. A., Blaese, R. M. & Winkelstein, J. A. A multiinstitutional survey of the Wiskott–Aldrich syndrome. J. Pediatr. 125, 876–885 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Dupuis-Girod, S. et al. Autoimmunity in Wiskott–Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics 111, e622–e627 (2003).

    Article  PubMed  Google Scholar 

  14. Imai, K. et al. Clinical course of patients with WASP gene mutations. Blood 103, 456–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Devriendt, K. et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nature Genet. 27, 313–317 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Ancliff, P. J. et al. Two novel activating mutations in the Wiskott–Aldrich syndrome protein result in congenital neutropenia. Blood 108, 2182–2189 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Beel, K. et al. A large kindred with X-linked neutropenia with an I294T mutation of the Wiskott–Aldrich syndrome gene. Br. J. Haematol. 144, 120–126 (2009).

    Article  PubMed  Google Scholar 

  18. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404, 151–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Abdul-Manan, N. et al. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott–Aldrich syndrome' protein. Nature 399, 379–383 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Tomasevic, N. et al. Differential regulation of WASP and N-WASP by Cdc42, Rac1, Nck, and PI(4,5)P2. Biochemistry 46, 3494–3502 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Badour, K. et al. Fyn and PTP-PEST-mediated regulation of Wiskott–Aldrich syndrome protein (WASp) tyrosine phosphorylation is required for coupling T cell antigen receptor engagement to WASp effector function and T cell activation. J. Exp. Med. 199, 99–112 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fukuoka, M. et al. A novel neural Wiskott–Aldrich syndrome protein (N-WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42. J. Cell Biol. 152, 471–482 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rohatgi, R., Nollau, P., Ho, H. Y., Kirschner, M. W. & Mayer, B. J. Nck and phosphatidylinositol 4, 5-bisphosphate synergistically activate actin polymerization through the N-WASP–Arp2/3 pathway. J. Biol. Chem. 276, 26448–26452 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Rivera, G. M., Vasilescu, D., Papayannopoulos, V., Lim, W. A. & Mayer, B. J. A reciprocal interdependence between Nck and PI(4,5)P2 promotes localized N-WASp-mediated actin polymerization in living cells. Mol. Cell 36, 525–535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ho, H. Y. et al. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP–WIP complex. Cell 118, 203–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Padrick, S. B. et al. Hierarchical regulation of WASP/WAVE proteins. Mol. Cell 32, 426–438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cory, G. O., Garg, R., Cramer, R. & Ridley, A. J. Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation. Wiskott–Aldrich Syndrome protein. J. Biol. Chem. 277, 45115–45121 (2002).

    Article  CAS  Google Scholar 

  28. Park, H. & Cox, D. Cdc42 regulates Fcγ receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott–Aldrich Syndrome protein (WASP) and neural-WASP. Mol. Biol. Cell 20, 4500–1508 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dovas, A. et al. Regulation of podosome dynamics by WASp phosphorylation: implication in matrix degradation and chemotaxis in macrophages. J. Cell Sci. 122, 3873–3882 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cammer, M. et al. The mechanism of CSF-1-induced Wiskott–Aldrich syndrome protein activation in vivo: a role for phosphatidylinositol 3-kinase and Cdc42. J. Biol. Chem. 284, 23302–23311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma, T., Samanna, V. & Chellaiah, M. A. Dramatic inhibition of osteoclast sealing ring formation and bone resorption in vitro by a WASP-peptide containing pTyr294 amino acid. J. Mol. Signal. 3, 4 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Blundell, M. P. et al. Phosphorylation of WASp is a key regulator of activity and stability in vivo. Proc. Natl Acad. Sci. USA 106, 15738–15743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Torres, E. & Rosen, M. K. Contingent phosphorylation/dephosphorylation provides a mechanism of molecular memory in WASP. Mol. Cell 11, 1215–1227 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Cory, G. O., Cramer, R., Blanchoin, L. & Ridley, A. J. Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP. Mol. Cell 11, 1229–1239 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Chou, H. C. et al. WIP regulates the stability and localization of WASP to podosomes in migrating dendritic cells. Curr. Biol. 16, 2337–2344 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Konno, A. et al. Differential contribution of Wiskott–Aldrich syndrome protein to selective advantage in T- and B-cell lineages. Blood 103, 676–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. de la Fuente, M. A. et al. WIP is a chaperone for Wiskott–Aldrich syndrome protein (WASP). Proc. Natl Acad. Sci. USA 104, 926–931 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ramesh, N., Anton, I. M., Hartwig, J. H. & Geha, R. S. WIP, a protein associated with Wiskott–Aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc. Natl Acad. Sci. USA 94, 14671–14676 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Volkman, B. F., Prehoda, K. E., Scott, J. A., Peterson, F. C. & Lim, W. A. Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott–Aldrich Syndrome. Cell 111, 565–576 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Peterson, F. C. et al. Multiple WASP-interacting protein recognition motifs are required for a functional interaction with N-WASP. J. Biol. Chem. 282, 8446–8453 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Sasahara, Y. et al. Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Mol. Cell 10, 1269–1281 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Lim, R. P., Misra, A., Wu, Z. & Thanabalu, T. Analysis of conformational changes in WASP using a split YFP. Biochem. Biophys. Res. Commun. 362, 1085–1089 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Imai, K., Nonoyama, S. & Ochs, H. D. WASP (Wiskott–Aldrich syndrome protein) gene mutations and phenotype. Curr. Opin. Allergy Clin. Immunol. 3, 427–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Linder, S. et al. Macrophages of patients with X-linked thrombocytopenia display an attenuated Wiskott–Aldrich syndrome phenotype. Immunol. Cell Biol. 81, 130–136 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Anton, I. M. & Jones, G. E. WIP: A multifunctional protein involved in actin cytoskeleton regulation. Eur. J. Cell Biol. 85, 295–304 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Anton, I. M. et al. WIP deficiency reveals a differential role for WIP and the actin cytoskeleton in T and B cell activation. Immunity 16, 193–204 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Parolini, O. et al. Expression of Wiskott–Aldrich syndrome protein (WASP) gene during haematopoietic differentiation. Blood 90, 70–75 (1997).

    CAS  PubMed  Google Scholar 

  48. Wengler, G., Gorlin, J. B., Williamson, J. M., Rosen, F. S. & Bing, D. H. Nonrandom inactivation of the X chromosome in early lineage haematopoietic cells in carriers of Wiskott–Aldrich syndrome. Blood 85, 2471–2477 (1995).

    CAS  PubMed  Google Scholar 

  49. Lacout, C. et al. A defect in haematopoietic stem cell migration explains the nonrandom X-chromosome inactivation in carriers of Wiskott–Aldrich syndrome. Blood 102, 1282–1289 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Snapper, S. B. et al. Wiskott–Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9, 81–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, J. et al. Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott–Aldrich syndrome protein-deficient lymphocytes. J. Exp. Med. 190, 1329–1342 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meyer-Bahlburg, A. et al. Wiskott–Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis. Blood 112, 4158–4169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cotta-de-Almeida, V. et al. Wiskott Aldrich syndrome protein (WASP) and N-WASP are critical for T cell development. Proc. Natl Acad. Sci. USA 104, 15424–15429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Westerberg, L. S. et al. WASP confers selective advantage for specific haematopoietic cell populations and serves a unique role in marginal zone B-cell homeostasis and function. Blood 112, 4139–4147 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Davis, B. R. et al. Unprecedented diversity of genotypic revertants in lymphocytes of a patient with Wiskott–Aldrich syndrome. Blood 111, 5064–5067 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Davis, B. R. & Candotti, F. Revertant somatic mosaicism in the Wiskott–Aldrich syndrome. Immunol. Res. 44, 127–131 (2009).

    Article  PubMed  Google Scholar 

  57. Ariga, T. et al. Spontaneous in vivo reversion of an inherited mutation in the Wiskott–Aldrich syndrome. J. Immunol. 166, 5245–5249 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Wada, T. et al. Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc. Natl Acad. Sci. USA 98, 8697–8702 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lutskiy, M. I., Sasahara, Y., Kenney, D. M., Rosen, F. S. & Remold-O'Donnell, E. Wiskott–Aldrich syndrome in a female. Blood 100, 2763–2768 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Wada, T. et al. Second-site mutation in the Wiskott-Aldrich syndrome (WAS) protein gene causes somatic mosaicism in two WAS siblings. J. Clin. Invest. 111, 1389–1397 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moulding, D. A. et al. Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J. Exp. Med. 204, 2213–2224 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Park, J. Y. et al. Early deficit of lymphocytes in Wiskott–Aldrich syndrome: possible role of WASP in human lymphocyte maturation. Clin. Exp. Immunol. 136, 104–110 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wada, T., Schurman, S. H., Garabedian, E. K., Yachie, A. & Candotti, F. Analysis of T-cell repertoire diversity in Wiskott–Aldrich syndrome. Blood 106, 3895–3897 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gallego, M. D., Santamaria, M., Pena, J. & Molina, I. J. Defective actin reorganization and polymerization of Wiskott–Aldrich T cells in response to CD3-mediated stimulation. Blood 90, 3089–3097 (1997).

    CAS  PubMed  Google Scholar 

  65. Gallego, M. D. et al. WIP and WASP play complementary roles in T cell homing and chemotaxis to SDF-1α. Int. Immunol. 18, 221–232 (2005).

    Article  PubMed  CAS  Google Scholar 

  66. Majstoravich, S. et al. Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott–Aldrich syndrome protein (WASp) for their morphology. Blood 104, 1396–1403 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Badour, K. et al. The Wiskott–Aldrich syndrome protein acts downstream of CD2 and the CD2AP and PSTPIP1 adaptors to promote formation of the immunological synapse. Immunity 18, 141–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Dupre, L. et al. Wiskott–Aldrich syndrome protein regulates lipid raft dynamics during immunological synapse formation. Immunity 17, 157–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Cannon, J. L. & Burkhardt, J. K. Differential roles for Wiskott–Aldrich syndrome protein in immune synapse formation and IL-2 production. J. Immunol. 173, 1658–1662 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Morales-Tirado, V. et al. Cutting edge: selective requirement for the Wiskott–Aldrich syndrome protein in cytokine, but not chemokine, secretion by CD4+ T cells. J. Immunol. 173, 726–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Trifari, S. et al. Defective Th1 cytokine gene transcription in CD4+ and CD8+ T cells from Wiskott–Aldrich syndrome patients. J. Immunol. 177, 7451–7461 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Morales-Tirado, V. et al. Critical requirement for the Wiskott–Aldrich syndrome protein in Th2 effector function. Blood 23 Dec 2009 (doi:10.1182/blood-2009-07-235754).

    Article  PubMed  CAS  Google Scholar 

  73. Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361, 2046–2055 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Engelhardt, K. R. et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J. Allergy Clin. Immunol. 124, 1289–1302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Randall, K. L. et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nature Immunol. 10, 1283–1291 (2009).

    Article  CAS  Google Scholar 

  76. Westerberg, L. et al. Wiskott–Aldrich syndrome protein deficiency leads to reduced B-cell adhesion, migration, and homing, and a delayed humoral immune response. Blood 105, 1144–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Kronenberg, M. & Kinjo, Y. Innate-like recognition of microbes by invariant natural killer T cells. Curr. Opin. Immunol. 21, 391–396 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Berzofsky, J. A. & Terabe, M. The contrasting roles of NKT cells in tumour immunity. Curr. Mol. Med. 9, 667–672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Astrakhan, A., Ochs, H. D. & Rawlings, D. J. Wiskott–Aldrich syndrome protein is required for homeostasis and function of invariant NKT cells. J. Immunol. 182, 7370–7380 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Locci, M. et al. The Wiskott–Aldrich syndrome protein is required for iNKT cell maturation and function. J. Exp. Med. 206, 735–742 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lorenzi, R., Brickell, P. M., Katz, D. R., Kinnon, C. & Thrasher, A. J. Wiskott–Aldrich syndrome protein is necessary for efficient IgG-mediated phagocytosis. Blood 95, 2943–2946 (2000).

    CAS  PubMed  Google Scholar 

  82. Leverrier, Y. et al. Cutting edge: the Wiskott–Aldrich syndrome protein is required for efficient phagocytosis of apoptotic cells. J. Immunol. 166, 4831–4834 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Tsuboi, S. & Meerloo, J. Wiskott–Aldrich syndrome protein is a key regulator of the phagocytic cup formation in macrophages. J. Biol. Chem. 282, 34194–34203 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Burns, S., Thrasher, A. J., Blundell, M. P., Machesky, L. & Jones, G. E. Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood 98, 1142–1149 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Linder, S., Nelson, D., Weiss, M. & Aepfelbacher, M. Wiskott–Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc. Natl Acad. Sci. USA 96, 9648–9653 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zicha, D. et al. Chemotaxis of macrophages is abolished in the Wiskott–Aldrich syndrome. Br. J. Haematol. 101, 659–665 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Badolato, R. et al. Monocytes from Wiskott–Aldrich patients display reduced chemotaxis and lack of cell polarization in response to monocyte chemoattractant protein-1 and formyl-methionyl-leucyl-phenylalanine. J. Immunol. 161, 1026–1033 (1998).

    CAS  PubMed  Google Scholar 

  88. de Noronha, S. et al. Impaired dendritic-cell homing in vivo in the absence of Wiskott–Aldrich syndrome protein. Blood 105, 1590–1597 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Bouma, G., Burns, S. & Thrasher, A. J. Impaired T-cell priming in vivo resulting from dysfunction of WASp-deficient dendritic cells. Blood 110, 4278–4284 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Pulecio, J. et al. Expression of Wiskott–Aldrich syndrome protein in dendritic cells regulates synapse formation and activation of naive CD8+ T cells. J. Immunol. 181, 1135–1142 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Puklin-Faucher, E. & Sheetz, M. P. The mechanical integrin cycle. J. Cell Sci. 122, 179–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Burns, S. et al. Maturation of DC is associated with changes in motile characteristics and adherence. Cell. Motil. Cytoskeleton 57, 118–132 (2004).

    Article  PubMed  Google Scholar 

  93. Zhang, H. et al. Impaired integrin-dependent function in Wiskott–Aldrich syndrome protein-deficient murine and human neutrophils. Immunity 25, 285–295 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Orange, J. S. et al. Wiskott–Aldrich syndrome protein is required for NK cell cytotoxicity and co-localizes with actin to NK cell-activating immunologic synapses. Proc. Natl Acad. Sci. USA 99, 11351–11356 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gismondi, A. et al. Impaired natural and CD16-mediated NK cell cytotoxicity in patients with WAS and XLT: ability of IL-2 to correct NK cell functional defect. Blood 104, 436–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Borg, C. et al. NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood 104, 3267–3275 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Maillard, M. H. et al. The Wiskott–Aldrich syndrome protein is required for the function of CD4+CD25+Foxp3+ regulatory T cells. J. Exp. Med. 204, 381–391 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Humblet-Baron, S. et al. Wiskott–Aldrich syndrome protein is required for regulatory T cell homeostasis. J. Clin. Invest. 117, 407–418 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Marangoni, F. et al. WASP regulates suppressor activity of human and murine CD4+CD25+FOXP3+ natural regulatory T cells. J. Exp. Med. 204, 369–380 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Adriani, M. et al. Impaired in vitro regulatory T cell function associated with Wiskott–Aldrich syndrome. Clin. Immunol. 124, 41–48 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ozsahin, H. et al. Long-term outcome following haematopoietic stem-cell transplantation in Wiskott–Aldrich syndrome: collaborative study of the European Society for Immunodeficiencies and European Group for Blood and Marrow Transplantation. Blood 111, 439–445 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Marathe, B. M. et al. Antiplatelet antibodies in WASP mice correlate with evidence of increased in vivo platelet consumption. Exp. Haematol. 37, 1353–1363 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.J.T. is a Wellcome Trust Senior Clinical Fellow. S.B. is supported by the Institute of Child Health Biomedical Research Centre and by the primary Immunodeficiency Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian J. Thrasher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

WAS

FURTHER INFORMATION

The Centre for Immunodeficiency homepage

WASPbase

European Society for Immunodeficiencies

Glossary

Scaffold protein

A protein that functions as a support to assemble a multiprotein complex.

ARP2–ARP3 complex

A complex composed of seven proteins, including ARP2, ARP3 and ARP complex protein 1 (ARPC1)–ARPC5. On its own, the complex has little activity but, when bound to an ARP2–ARP3-nucleation-promoting factor, it is activated to generate new actin filaments on pre-existing filaments.

Actin filaments

Formed from the nucleation of monomeric actin subunits during remodelling of the cytoskeleton.

Thrombocytopenia

A lower number of circulating platelets than normal, owing to either the failure of production from bone marrow megakaryocytes or increased clearance from the circulation, predominantly in the spleen.

Rho family GTPases

A subfamily of small GTP-binding proteins that have key roles in rearrangement of the cytoskeleton. The nucleotide-bound state of these GTPases is generally regulated by guanine-nucleotide exchange factors (GEFs), which catalyse GDP–GTP exchange, and GTPase-activating proteins, which facilitate the hydrolysis of the bound GTP. Activation, by extracellular signals through various receptors, results in translocation to the plasma membrane thereby localizing their activity to discrete sites in the cell.

Calpain

One of a group of Ca2+-activated cytoplasmic proteases that are found in many tissues and that hydrolyse various endogenous proteins, including neuropeptides and cytoskeletal proteins, as well as proteins from smooth muscle, cardiac muscle, liver, platelets and erythrocytes. Two subclasses are known: one with high Ca2+ sensitivity and one with low Ca2+ sensitivity.

Podosome

An adhesion structure that is found in various malignant cells and in some normal cells, including macrophages and osteoclasts. Podosomes are small (0.5 μm diameter) structures comprising an actin core surrounded by a ring containing typical focal-adhesion proteins, such as vinculin and paxillin.

Aorta–gonad–mesonephros region

An embryonic site in which the development of definitive haematopoietic stem cells (HSCs) occurs. It comprises the aorta and developing reproductive and excretory (mesonephros) systems. In this haematogenic site, HSCs are concentrated in the aortic region.

X-chromosome inactivation

In females, a single, randomly selected X chromosome is inactivated during early embryogenesis to avoid an imbalance of X-linked genes. This process is controlled by the XIST gene, which produces a large non-protein-encoding RNA that triggers widespread gene silencing on the same X chromosome. If one X chromosome encodes a gene that impairs cell growth or survival, development of cells with the non-silenced normal chromosome is favoured. This is known as apparent non-random X-chromosome inactivation.

Aneuploidy

The occurrence of one or more extra or missing chromosomes, which leads to an unbalanced chromosome complement.

Immune synapse

A discrete contact site classically formed at the point of contact between an antigen-presenting cell (APC) and a T cell. Similar synapses have been described in other immune cells such as natural killer or cytotoxic T cells, where the synapse is formed with a target cell. It is important in establishing cell adhesion and polarity, is influenced by the cytoskeleton and transduces highly controlled secretory signals, thereby allowing the directed release of cytokines or lytic granules towards the APC or target cell.

Marginal zone

A region at the border of the white pulp of the spleen.

Marginal zone B cell

A mature B cell that is enriched in the marginal zone of the spleen. They recognize antigen through semi-invariant receptors, which stimulates their rapid differentiation into antibody-secreting cells. They are thought to be important for host defence against circulating blood-borne pathogens.

Integrin

A member of a large family of transmembrane proteins that traverse the plasma membrane as heterodimers of α- and β-subunits. They have an important role in mediating the interaction of cells with extracellular matrix components, such as fibronectin, and in mediating intracellular cytoskeleton arrangement.

Invariant NKT (iNKT) cell

A lymphocyte that expresses a particular variable gene segment, Vα14 (in mice) and Vα24 (in humans), precisely rearranged to a particular Jα (joining) gene segment to yield T cell receptor α-chains with an invariant sequence. Typically, these cells co-express cell surface markers that are encoded by the natural killer (NK) locus, and they are activated by recognition of CD1d molecules presenting glycolipid antigens.

Lamellipodia

Thin sheet-like processes, which extend at the leading edge of moving cells in an actin-dependent manner, promoted by the Rho family GTPase RAC1.

Respiratory burst

A large increase in oxygen consumption and reactive oxygen species generation that accompanies the exposure of neutrophils to microorganisms and/or inflammatory mediators.

Eczematous skin disease

A clinical process that is associated with severe pathological changes to the skin, which is characterized by redness, oozing, crusting and loss of pigmentation. Histologically, it is characterized by epidermal changes of intracellular oedema, spongiosis or vesiculation.

Antinuclear antibodies

Heterogeneous autoantibodies against one or more antigens present in the nucleus, including chromatin, nucleosomes and ribonuclear proteins. Antinuclear antibodies are found in association with many different autoimmune diseases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thrasher, A., Burns, S. WASP: a key immunological multitasker. Nat Rev Immunol 10, 182–192 (2010). https://doi.org/10.1038/nri2724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2724

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing