Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Trends in large-scale mouse mutagenesis: from genetics to functional genomics

Abstract

The primary goal of mouse mutagenesis programmes is to develop a fundamental research infrastructure for mammalian functional genomics and to produce human disease models. Many large-scale programmes have been ongoing since 1997; these culminated in the International Knockout Mouse Consortium (IKMC) in 2007 with the aim to establish knockout and conditional mouse strains for all mouse genes. This article traces the origins and rationale of these large-scale mouse mutagenesis programmes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mating scheme of ENU-mutagenesis protocols in the mouse.
Figure 2: Knockout and trapping mutagenesis and related infrastructures.
Figure 3: Outline of ENU-based gene-driven mutagenesis.

References

  1. Little, C. C. & Bagg, H. J. The occurrence of two heritable types of abnormality among the descendants of X-rayed mice. Amer. J. Roentgenol. Radiat. Therap. 10, 975–989 (1923).

    CAS  Google Scholar 

  2. Muller, H. J. Artificial transmutation of the gene. Science 66, 84–87 (1927).

    Article  CAS  Google Scholar 

  3. Russell, W. L. et al. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc. Natl Acad. Sci. USA 76, 5818–5819 (1979).

    Article  CAS  Google Scholar 

  4. Russell, W. L. et al. Dose-response curve for ethylnitrosourea-induced specific-locus mutations in mouse spermatogonia. Proc. Natl Acad. Sci. USA 79, 3589–3591 (1982).

    Article  CAS  Google Scholar 

  5. Hitotsumachi, S., Carpenter, D. A. & Russell, W. L. Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc. Natl Acad. Sci. USA 82, 6619–6621 (1985).

    Article  CAS  Google Scholar 

  6. Palmiter, R. D. et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300, 611–615 (1982).

    Article  CAS  Google Scholar 

  7. Capecchi, M. R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  Google Scholar 

  8. Hrabé de Angelis, M. et al. Genome-wide, large scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444–447 (2000).

    Article  Google Scholar 

  9. Nolan, P. M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000).

    Article  CAS  Google Scholar 

  10. Takahashi, J. S., Pinto, L. H. & Vitaterna, M. H. Forward and reverse genetic approaches to behavior in the mouse. Science 264, 1724–1733 (1994).

    Article  CAS  Google Scholar 

  11. International Mouse Knockout Consortium. A mouse for all reasons. Cell 128, 9–13 (2007).

  12. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  13. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  14. Lyon, M. F., Rastan, S. & Brown, S. D. M. (eds) Genetic Variants and Strains of the Laboratory Mouse 3rd edn (Oxford University Press, Oxford, 1996)

    Google Scholar 

  15. Ramirez-Solis, R., Liu, P. & Bradley, A. Chromosome engineering in mice. Nature 378, 720–724 (1995).

    Article  CAS  Google Scholar 

  16. Kile, B. T. et al. Functional genetic analysis of mouse chromosome 11. Nature 425, 81–86 (2003).

    Article  CAS  Google Scholar 

  17. Whittingham, D. G., Leibo, S. P. & Mazur, P. Survival of mouse embryos frozen to −196 °C and −269 °C. Science 178, 411–414 (1972).

    Article  CAS  Google Scholar 

  18. Nakagata, N. Cryopreservation of mouse spermatozoa. Mamm. Genome 11, 572–576 (2000)

    Article  CAS  Google Scholar 

  19. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

  20. Noveroske, J. K., Weber, J. S. & Justice, M. J. The mutagenic action of N-ethyl-N-nitrosourea in the mouse. Mamm. Genome 11, 478–483 (2000).

    Article  CAS  Google Scholar 

  21. Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  Google Scholar 

  22. Su, L.-K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    Article  CAS  Google Scholar 

  23. Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725 (1994).

    Article  CAS  Google Scholar 

  24. King, D. P. et al. Positional cloning of the mouse circadian Clock gene. Cell 89, 641–653 (1997).

    Article  CAS  Google Scholar 

  25. Rogers, D. C. et al. Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm. Genome 8, 711–713 (1997).

    Article  CAS  Google Scholar 

  26. Favor, J. & Neuhäuser-Klaus, A. Saturation mutagenesis for dominant eye morphological defects in the mouse Mus musculus. Mamm. Genome 11, 520–525 (2000).

    Article  CAS  Google Scholar 

  27. Fuchs, H. et al. Screening of dysmorphological abnormalities — a powerful tool to isolate new mouse mutants. Mamm. Genome 11, 528–530 (2000).

    Article  CAS  Google Scholar 

  28. Flaswinkel, H. et al. Identification of immunological relevant phenotypes in ENU mutagenized mice. Mamm. Genome 11, 526–527 (2000).

    Article  CAS  Google Scholar 

  29. Pretsch, W. Enzyme-activity mutants in Mus musculus. I. Phenotypic description and genetic characterization of ethylnitrosourea-induced mutations. Mamm. Genome 11, 537–542 (2000).

    Article  CAS  Google Scholar 

  30. Inoue, M. et al. A series of maturity onset diabetes of the young, type 2 (MODY2) mouse models generated by a large-scale ENU mutagenesis program. Hum. Mol. Genet. 13, 1147–1157 (2004).

    Article  CAS  Google Scholar 

  31. Rinchik, E. M. & Carpenter, D. A. N-ethyl-N-nitrosourea mutagenesis of a 6- to 11-cM subregion of the Fah-Hbb interval of mouse chromosome 7: completed testing of 4557 gametes and deletion mapping and complementation analysis of 31 mutations. Genetics 152, 373–383 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hagge-Greenberg, A., Snow, P. & O'Brien, T. P. Establishing an ENU mutagenesis screen for the piebald region of mouse chromosome 14. Mamm. Genome 12, 938–941 (2001).

    Article  CAS  Google Scholar 

  33. Chikaraishi, D. M., Deeb, S. S. & Sueoka, N. Sequence complexity of nuclear RNAs in adult rat tissues. Cell 13, 111–120 (1978).

    Article  CAS  Google Scholar 

  34. Austin, C. P. et al. The knockout mouse project. Nature Genet. 36, 921–924 (2004).

    Article  CAS  Google Scholar 

  35. Auwerx, J. et al. The European dimension for the mouse genome mutagenesis program. Nature Genet. 36, 925–927 (2004).

    Article  CAS  Google Scholar 

  36. Testa, G. et al. A reliable lacZ expression reporter cassette for multipurpose, knockout-first alleles. Genesis 38, 151–158 (2004).

    Article  CAS  Google Scholar 

  37. Schnütgen, F. et al. Genomewide production of multipurpose alleles for the functional analysis of the mouse genome. Proc. Natl Acad. Sci. USA 102, 7271–7226 (2005).

    Article  Google Scholar 

  38. Metzger, D. & Chambon, P. Site- and time-specific gene targeting in the mouse. Methods 24, 71–80 (2001).

    Article  CAS  Google Scholar 

  39. Editorial. Mutant mice galore. Nature 446, 469–470 (2007).

  40. Sun, L. V. et al. PBmice: an integrated database system of piggyBac (PB) insertional mutations and their characterization in mice. Nucleic Acid Res. 36, D729–D734 (2007).

    Article  Google Scholar 

  41. Dupuy, A. J., Jenkins, N. A. & Copeland, N. G. Sleeping beauty: a novel cancer gene discovery tool. Human Mol. Genet. 15, R75–R79 (2008).

    Article  Google Scholar 

  42. The Eumorphia Consortium. EMPReSS: standardized phenotype screens for functional annotation of the mouse genome. Nature Genet. 37, 1155 (2005).

  43. FIMRe Board of Directors. FIMRe: Federation of International Mouse Resources: global networking of resource centers. Mamm. Genome 17, 363–364 (2006).

  44. The Mouse Phenotype Database Integration Consortium. Integration of mouse phenome data resources. Mamm. Genome 18, 157–163 (2007).

  45. Beier, D. R. Sequence-based analysis of mutagenized mice. Mamm. Genome 11, 594–597 (2000).

    Article  CAS  Google Scholar 

  46. Coghill, E. L. et al. A gene-driven approach to the identification of ENU mutants in the mouse. Nature Genet. 30, 255–256 (2002).

    Article  Google Scholar 

  47. Quwailid, M. M. et al. A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm. Genome 15, 585–591 (2004).

    Article  CAS  Google Scholar 

  48. Augustin, M. et al. Efficient and fast targeted production of murine models based on ENU mutagenesis. Mamm. Genome 16, 405–413 (2005).

    Article  CAS  Google Scholar 

  49. Sakuraba, Y. et al. Molecular characterization of ENU mouse mutagenesis and archives. Biochem. Biophys. Res. Commun. 336, 609–616 (2005).

    Article  CAS  Google Scholar 

  50. Michaud, E. J. et al. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice. BMC Genomics 6, 164 (2005).

    Article  Google Scholar 

  51. Takahasi, K. R., Sakuraba, Y. & Gondo, Y. Mutational pattern and frequency of induced nucleotide changes in mouse ENU mutagenesis. BMC Mol. Biol. 8, 52 (2007).

    Article  Google Scholar 

  52. Rubio-Aliaga, I. et al. A genetic screen for modifiers of the Delta1-dependent Notch signaling function in the mouse. Genetics 175, 1451–1463 (2007).

    Article  CAS  Google Scholar 

  53. Matera, I. et al. A sensitized mutagenesis screen identifies Gli3 as a modifier of Sox10 neurocristopathy. Human Molec. Genet. 17, 2118–2131 (2008).

    Article  CAS  Google Scholar 

  54. Frazer, K. A. et al. A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448, 1050–1053 (2007).

    Article  CAS  Google Scholar 

  55. Kwong, L. N. et al. Identification of Mom7, a novel modifier of ApcMin/+ on mouse chromosome 18. Genetics 176, 1237–1244 (2007).

    Article  CAS  Google Scholar 

  56. Nadeau, J. H., Singer, J. B., Matin, A. & Lander, E. S. Analysing complex genetic traits with chromosome substitution strains. Nature Genet. 24, 221–225 (2000).

    Article  CAS  Google Scholar 

  57. Oka, A. et al. Hybrid breakdown caused by substitution of the X chromosome between two mouse subspecies. Genetics 166, 913–924 (2004).

    Article  CAS  Google Scholar 

  58. The Complex Trait Consortium. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genet. 36, 1133–1137 (2004).

  59. Burmeister, M., McInnis, M. G. & Zöllner, S. Psychiatric genetics: progress amid controversy. Nature Rev. Genet. 9, 527–540 (2008).

    Article  CAS  Google Scholar 

  60. Clapcote, S. J. et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54, 387–402 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary information S1 (box)

Key mutation numbers and rates in ENU mutagenesis. (PDF 213 kb)

Related links

Related links

FURTHER INFORMATION

AMMRA, Asian Mouse Mutagenesis and Resource Association

APF, Australian Phenomics Facility

Baylor College of Medicine ENU mouse mutagenesis

CARD, Center for Animal Resources and Development

CASIMIR, Coordination and Sustainability of International Mouse Informatics Resources

CMHD, Center for Modeling Human Disease

DBCLS, Database Center for Life Sciences

EMMA, European Mouse Mutant Archive

EMPReSS, European Mouse Phenotyping Resource of Standardized Screen (SOP database)

EuCOMM, European Conditional Mouse Mutagenesis

EUMODIC, The European Mouse Disease Clinic

Eumorphia, European Phenotyping Consortium 2002–2006

EURExpress II, gene expression atlas by RNA in situ

EuroPhenome, Europhenome Mouse Phenotyping Resource

Experimental Animal Division, RIKEN BioResource Center

FIMRe, Federation of International Mouse Resources

GMC, German Mouse Clinic

Helmholtz Zentrum Munchen German Research Center ENU mouse mutagenesis

IGTC, International Gene Trap Consortium

IMSR, International Mouse Strain Resource

INGENOtyping for ENU gene-driven mutagenesis

JAX Mice, The Jackson Laboratory

JAX Mouse Heart, Lung, Blood and Sleep Disorders Center

JAX Mouse Phenome Database

JAX Neuroscience Mutagenesis Facility

JMSR, Japan Mouse/Rat Strain Resource Database

KOMP, Knockout Mouse Project

McLaughlin Research Institue ENU mouse mutagenesis

Medical Research Council, archive for ENU gene-driven mutagenesis

Medical Research Council ENU mouse mutagenesis

MGI, Mouse Genome Informatics

MMRRC, Mutant Mouse Regional Resource Centers

NorCOMM, North American Conditional Mouse Mutagenesis

Northwestern University ENU mouse mutagenesis

Oak Ridge National Laboratory Mutant Mouse Database

PBmice, PiggyBac Mutagenesis Information Center

RIKEN ENU mouse mutagenesis

RIKEN Mutant Mouse Library, ENU-based gene-driven mutagenesis

TCP, Toronto Centre for Phenogenomics

Tennessee Mouse Genome Consortium ENU mouse mutagenesis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gondo, Y. Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat Rev Genet 9, 803–810 (2008). https://doi.org/10.1038/nrg2431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2431

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing