Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of Crohn disease, an archetypal inflammatory barrier disease

Key Points

  • The aetiology of Crohn disease, as an archetypal inflammatory barrier disease, involves inherited defects in several genes that maintain the integrity of barrier function.

  • CARD15 was identified as the first disease gene for Crohn disease; the main three variants identified all affect the ligand-binding domain of the NOD2 protein.

  • CARD15 variants confer an almost autosomal-recessive genetic effect that is much stronger than expected for a susceptibility gene in a polygenic condition.

  • Additional disease genes (SLC22A4, SLC22A5 and DLG5) that have small odds ratios have been identified, but their involvement remains to be confirmed in independent samples.

  • The function of variability in susceptibility genes that leads to disease might be understood by studying evolutionary control.

  • Epidemiological trigger factors for inflammatory barrier diseases might interact with genetic susceptibility on the individual level through alterations of the human flora on body surfaces.

Abstract

Chronic inflammatory disorders such as Crohn disease, atopic eczema, asthma and psoriasis are triggered by hitherto unknown environmental factors that function on the background of some polygenic susceptibility. Recent technological advances have allowed us to unravel the genetic aetiology of these and other complex diseases. Using Crohn disease as an example, we show how the discovery of susceptibility genes furthers our understanding of the underlying disease mechanisms and how it will, ultimately, give rise to new therapeutic developments. The long-term goal of such endeavours is to develop targeted prophylactic strategies. These will probably target the molecular interaction on the mucosal surface between the products of the genome and the microbial metagenome of a patient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clustering of linkage regions and disease genes in human inflammatory barrier disease.
Figure 2: Domain architectures of selected CATERPILLER-related gene products from different eukaryotes.
Figure 3: NOD2 function and the intestinal epithelial barrier.
Figure 4: Variation in CATERPILLER genes contributes to gene plasticity and gives rise to various autoimmune diseases.
Figure 5: A mechanism for generating plasticity of barrier gene function: complex regulation of CATERPILLER gene function.

Similar content being viewed by others

References

  1. Becker, K. G. et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc. Natl Acad. Sci. USA 95, 9979–9984 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002). Seminal paper that highlights the co-morbidities of different inflammatory barrier diseases and provides an epidemiological link to infection.

    Article  PubMed  Google Scholar 

  3. Crohn, B. B., Ginzburg, L. & Oppenheimer, G. D. Landmark article Oct 15, 1932. Regional ileitis. A pathological and clinical entity. JAMA 251, 73–79 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Binder, V. Epidemiology of IBD during the twentieth century: an integrated view. Best Pract. Res. Clin. Gastroenterol. 18, 463–479 (2004).

    Article  PubMed  Google Scholar 

  5. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. Lancet 351, 1225–1232 (1998).

  6. Gent, A. E., Hellier, M. D., Grace, R. H., Swarbrick, E. T. & Coggon, D. Inflammatory bowel disease and domestic hygiene in infancy. Lancet 343, 766–767 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Hampe, J., Heymann, K., Krawczak, M. & Schreiber, S. Association of inflammatory bowel disease with indicators for childhood antigen and infection exposure. Int. J. Colorectal Dis. 18, 413–417 (2003).

    Article  PubMed  Google Scholar 

  8. Kuster, W., Pascoe, L., Purrmann, J., Funk, S. & Majewski, F. The genetics of Crohn disease: complex segregation analysis of a family study with 265 patients with Crohn disease and 5,387 relatives. Am. J. Med. Genet. 32, 105–108 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Tysk, C., Lindberg, E., Jarnerot, G. & Floderus Myrhed, B. Ulcerative colitis and Crohn's disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut 29, 990–996 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Satsangi, J., Rosenberg, W. M. C. & Jewell, D. P. The prevalence of inflammatory bowel disease in relatives of patients with Crohn's disease. Eur. J. Gastroenterol. Hepatol. 6, 413–416 (1994).

    Google Scholar 

  11. Orholm, M. et al. Familial occurrence of inflammatory bowel disease. N. Engl. J. Med. 324, 84–88 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Meucci, G. et al. Familial aggregation of inflammatory bowel disease in northern Italy: a multicenter study. The Gruppo di Studio per le Malattie Infiammatorie Intestinali (IBD Study Group). Gastroenterology 103, 514–519 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Thompson, N. P., Driscoll, R., Pounder, R. E. & Wakefield, A. J. Genetics versus environment in inflammatory bowel disease: results of a British twin study. Br. Med. J. 312, 95–96 (1996).

    Article  CAS  Google Scholar 

  14. Orholm, M. et al. Investigation of inheritance of chronic inflammatory bowel diseases by complex segregation analysis. Br. Med. J. 306, 20–24 (1993).

    Article  CAS  Google Scholar 

  15. Koutroubakis, I., Manousos, O. N., Meuwissen, S. G. & Pena, A. S. Environmental risk factors in inflammatory bowel disease. Hepatogastroenterology 43, 381–393 (1996).

    CAS  PubMed  Google Scholar 

  16. Parkes, M., Satsangi, J. & Jewell, D. Contribution of the IL-2 and IL-10 genes to inflammatory bowel disease (IBD) susceptibility. Clin. Exp. Immunol. 113, 28–32 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahler, M. et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am. J. Physiol. 274, G544–G551 (1998).

    CAS  PubMed  Google Scholar 

  18. Bristol, I. J. et al. Heritable susceptibility for colitis in mice induced by IL-10 deficiency. Inflamm. Bowel Dis. 6, 290–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Mahler, M. et al. Genetic analysis of susceptibility to dextran sulfate sodium-induced colitis in mice. Genomics 55, 147–156 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Farmer, M. A. et al. A major quantitative trait locus on chromosome 3 controls colitis severity in IL-10-deficient mice. Proc. Natl Acad. Sci. USA 98, 13820–13825 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kerem, B. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genet. 33, S228–S237 (2003).

    Article  CAS  Google Scholar 

  23. Glazier, A. M., Nadeau, J. H. & Aitman, T. J. Finding genes that underlie complex traits. Science 298, 2345–2349 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Salanti, G., Sanderson, S. & Higgins, J. P. Obstacles and opportunities in meta-analysis of genetic association studies. Genet. Med. 7, 13–20 (2005).

    Article  PubMed  Google Scholar 

  25. Pritchard, J. K. & Cox, N. J. The allelic architecture of human disease genes: common disease-common variant...or not? Hum. Mol. Genet. 11, 2417–2423 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Valentonyte, R. et al. Sarcoidosis is associated with a truncating splice site mutation in the BTNL2 gene. Nature Genet. 37, 357–364 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Silverberg, M. S. et al. Diagnostic misclassification reduces the ability to detect linkage in inflammatory bowel disease genetic studies. Gut 49, 773–776 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schaid, D. J. Genetic epidemiology and haplotypes. Genet. Epidemiol. 27, 317–320 (2004).

    Article  PubMed  Google Scholar 

  30. Schaid, D. J. & Jacobsen, S. J. Biased tests of association: comparisons of allele frequencies when departing from Hardy–Weinberg proportions. Am. J. Epidemiol. 149, 706–711 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Spielman, R. S., McGinnis, R. E. & Ewens, W. J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516 (1993). The authors provide an introduction to transmission analysis for association studies.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Morton, N. E. & Collins, A. Tests and estimates of allelic association in complex inheritance. Proc. Natl Acad. Sci. USA 95, 11389–11393 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zollner, S. et al. Evidence for extensive transmission distortion in the human genome. Am. J. Hum. Genet. 74, 62–72 (2004).

    Article  PubMed  Google Scholar 

  34. Geesaman, B. J. et al. Haplotype-based identification of a microsomal transfer protein marker associated with the human lifespan. Proc. Natl Acad. Sci. USA 100, 14115–14120 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Pritchard, J. K. & Rosenberg, N. A. Use of unlinked genetic markers to detect population stratification in association studies. Am. J. Hum. Genet. 65, 220–228 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hugot, J. P. et al. Mapping of a susceptibility locus for Crohn's disease on chromosome 16. Nature 379, 821–823 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Satsangi, J. et al. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nature Genet. 14, 199–202 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Cho, J. H. et al. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: Evidence for epistasis between 1p and IBD1. Proc. Natl Acad. Sci. USA 95, 7502–7507 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hampe, J. et al. A genome-wide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort. Am. J. Hum. Genet. 64, 808–816 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rioux, J. D. et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am. J. Hum. Genet. 66, 1863–1870 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Curran, M. E. et al. Genetic analysis of inflammatory bowel disease in a large European cohort supports linkage to chromosomes 12 and 16. Gastroenterology 115, 1066–1071 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Brant, S. R. et al. American families with Crohn's disease have strong evidence for linkage to chromosome 16 but not chromosome 12. Gastroenterology 115, 1056–1061 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Cavanaugh, J. International collaboration provides convincing linkage replication in complex disease through analysis of a large pooled data set: Crohn disease and chromosome 16. Am. J. Hum. Genet. 68, 1165–1171 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Hampe, J. et al. Evidence for a NOD2-independent susceptibility locus for inflammatory bowel disease on chromosome 16p. Proc. Natl Acad. Sci. USA 99, 321–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. van Heel, D. A. et al. The IBD6 Crohn's disease locus demonstrates complex interactions with CARD15 and IBD5 disease-associated variants. Hum. Mol. Genet. 12, 2569–2575 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Hampe, J. et al. Linkage of inflammatory bowel disease to human chromosome 6p. Am. J. Hum. Genet. 65, 1647–1655 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van Heel, D. A. et al. Inflammatory bowel disease is associated with a TNF polymorphism that affects an interaction between the OCT1 and NF-κB transcription factors. Hum. Mol. Genet. 11, 1281–1289 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Nomura, E. et al. Mapping of a disease susceptibility locus in chromosome 6p in Japanese patients with ulcerative colitis. Genes Immun. 5, 477–483 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. van Heel, D. A. et al. Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Hum. Mol. Genet. 13, 763–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Ogura, Y. et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem. 276, 4812–4818 (2001). This is the first description of NOD2.

    Article  CAS  PubMed  Google Scholar 

  52. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Hampe, J. et al. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet 357, 1925–1928 (2001). References 52–54 are seminal papers that describe NOD2 ( CARD15 ) as the first disease gene in Crohn disease.

    Article  CAS  PubMed  Google Scholar 

  55. Stoll, M. et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nature Genet. 36, 476–480 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Yamazaki, K. et al. Association analysis of SLC22A4, SLC22A5 and DLG5 in Japanese patients with Crohn disease. J. Hum. Genet. 49, 664–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Cuthbert, A. P. et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122, 867–874 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Wakabayashi, M. et al. Interaction of lp-dlg/KIAA0583, a membrane-associated guanylate kinase family protein, with vinexin and β-catenin at sites of cell–cell contact. J. Biol. Chem. 278, 21709–21714 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Rioux, J. D. et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nature Genet. 29, 223–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Giallourakis, C. et al. IBD5 is a general risk factor for inflammatory bowel disease: replication of association with Crohn disease and identification of a novel association with ulcerative colitis. Am. J. Hum. Genet. 73, 205–211 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peltekova, V. D. et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nature Genet. 36, 471–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Inoue, N. et al. Lack of common NOD2 variants in Japanese patients with Crohn's disease. Gastroenterology 123, 86–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Croucher, P. J. P. et al. Haplotype structure and association to Crohn's disease of CARD15 mutations in two ethnically divergent populations. Eur. J. Hum. Genet. 11, 6–16 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Guo, Q. S., Xia, B., Jiang, Y., Qu, Y. & Li, J. NOD2 3020insC frameshift mutation is not associated with inflammatory bowel disease in Chinese patients of Han nationality. World J. Gastroenterol. 10, 1069–1071 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Risch, N. J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Ma, Y. et al. A genome-wide search identifies potential new susceptibility loci for Crohn's disease. Inflamm. Bowel Dis. 5, 271–278 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Mirza, M. M. et al. Genetic evidence for interaction of the 5q31 cytokine locus and the CARD15 gene in Crohn disease. Am. J. Hum. Genet. 72, 1018–1022 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McGovern, D. P., Van Heel, D. A., Negoro, K., Ahmad, T. & Jewell, D. P. Further evidence of IBD5/CARD15 (NOD2) epistasis in the susceptibility to ulcerative colitis. Am. J. Hum. Genet. 73, 1465–1466 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Heel, D. A. et al. Fine mapping of the IBD1 locus did not identify Crohn disease-associated NOD2 variants: implications for complex disease genetics. Am. J. Med. Genet. 111, 253–259 (2002).

    Article  PubMed  Google Scholar 

  70. The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  71. Albrecht, M., Domingues, F. S., Schreiber, S. & Lengauer, T. Structural localization of disease-associated sequence variations in the NACHT and LRR domains of PYPAF1 and NOD2. FEBS Lett. 554, 520–528 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Bird, T. D., Jarvik, G. P. & Wood, N. W. Genetic association studies: genes in search of diseases. Neurology 57, 1153–1154 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Daly, M. J. & Rioux, J. D. New approaches to gene hunting in IBD. Inflamm. Bowel Dis. 10, 312–317 (2004).

    Article  PubMed  Google Scholar 

  74. Harton, J. A., Linhoff, M. W., Zhang, J. & Ting, J. P. Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J. Immunol. 169, 4088–4093 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Ting, J. P. & Davis, B. K. CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu. Rev. Immunol. 23, 387–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Wyatt, J., Vogelsang, H., Hubl, W., Waldhoer, T. & Lochs, H. Intestinal permeability and the prediction of relapse in Crohn's disease. Lancet 341, 1437–1439 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Irvine, E. J. & Marshall, J. K. Increased intestinal permeability precedes the onset of Crohn's disease in a subject with familial risk. Gastroenterology 119, 1740–1744 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Katz, K. D. et al. Intestinal permeability in patients with Crohn's disease and their healthy relatives. Gastroenterology 97, 927–931 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Soderholm, J. D. et al. Different intestinal permeability patterns in relatives and spouses of patients with Crohn's disease: an inherited defect in mucosal defence? Gut 44, 96–100 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thjodleifsson, B. et al. Subclinical intestinal inflammation: an inherited abnormality in Crohn's disease relatives? Gastroenterology 124, 1728–1737 (2003).

    Article  PubMed  Google Scholar 

  81. Gewirtz, A. T. Intestinal epithelial Toll-like receptors: to protect. And serve? Curr. Pharm. Des. 9, 1–5 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Jobin, C. Intestinal epithelial cells and innate immunity in the intestine: is CARD15/Nod2 another player? Gastroenterology 124, 1145–1149 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Cario, E. et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J. Immunol. 164, 966–972 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Abreu, M. T. et al. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J. Immunol. 167, 1609–1616 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Hornef, M. W., Frisan, T., Vandewalle, A., Normark, S. & Richter-Dahlfors, A. Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J. Exp. Med. 195, 559–570 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hisamatsu, T. et al. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124, 993–1000 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Rosenstiel, P. et al. TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 124, 1001–1009 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. O'Neil, D. A. et al. Expression and regulation of the human β-defensins hBD-1 and hBD-2 in intestinal epithelium. J. Immunol. 163, 6718–6724 (1999).

    CAS  PubMed  Google Scholar 

  89. Girardin, S. E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2: Implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512 (2003). References 89 and 90 identify muramyl dipeptide as the main ligand for NOD2.

    Article  CAS  PubMed  Google Scholar 

  91. Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005). The first Nod2/Card15 murine knockout model that supports the 'chronic infection hypothesis' for Crohn disease through NOD2 sensing deficiency. Detection of a reduced cyrptdin expression on intestinal epithelial cells as the main consequence of a lack of NOD2 function.

    Article  CAS  PubMed  Google Scholar 

  92. Wehkamp, J. et al. NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal α-defensin expression. Gut 53, 1658–1664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Netea, M. G. et al. NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: implications for Crohn's disease. Eur. J. Immunol. 34, 2052–2059 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Maeda, S. et al. Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1β processing. Science 307, 734–738 (2005). The authors describe a transgenic murine model of NOD2/CARD15 1007fsInsC leading to an alternative hypothesis for NF-κB activation in the intestinal mucosa in Crohn disease.

    Article  CAS  PubMed  Google Scholar 

  95. Akey, J. M., Zhang, G., Zhang, K., Jin, L. & Shriver, M. D. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 12, 1805–1814 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shin, C. & Manley, J. L. Cell signalling and the control of pre-mRNA splicing. Nature Rev. Mol. Cell Biol. 5, 727–738 (2004).

    Article  CAS  Google Scholar 

  97. Dinesh-Kumar, S. P. & Baker, B. J. Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc. Natl Acad. Sci. USA 97, 1908–1013 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dinesh-Kumar, S. P., Tham, W. H. & Baker, B. J. Structure–function analysis of the tobacco mosaic virus resistance gene. N. Proc. Natl Acad. Sci. USA 97, 14789–14794 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Resch, A. et al. Assessing the impact of alternative splicing on domain interactions in the human proteome. J. Proteome Res. 3, 76–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Hiller, M. et al. Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity. Nature Genet. 36, 1255–1257 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Hooper, L. V. & Gordon, J. I. Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nature Rev. Immunol. 4, 478–485 (2004).

    Article  CAS  Google Scholar 

  103. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004). This is a seminal paper that describes the symbiotic interaction between intestinal epithelial cells and the mucosal flora.

    Article  CAS  PubMed  Google Scholar 

  104. Alley, C. D., Kiyono, H. & McGhee, J. R. Murine bone marrow IgA responses to orally administered sheep erythrocytes. J. Immunol. 136, 4414–4419 (1986).

    CAS  PubMed  Google Scholar 

  105. Fanaro, S., Chierici, R., Guerrini, P. & Vigi, V. Intestinal microflora in early infancy: composition and development. Acta Paediatr. 91, S48–S55 (2003).

    Google Scholar 

  106. Dai, D. & Walker, W. A. Protective nutrients and bacterial colonization in the immature human gut. Adv. Pediatr. 46, 353–382 (1999).

    CAS  PubMed  Google Scholar 

  107. Walker, W. A. Role of nutrients and bacterial colonization in the development of intestinal host defense. J. Pediatr. Gastroenterol. Nutr. 30, S2–S7 (2000).

    Article  PubMed  Google Scholar 

  108. Smith, S., Vaughan, E. E. & De Vos, W. M. Quorum sensing within the gut. Microbial Ecol. Health Dis. 2, S81–S92 (2000).

    Google Scholar 

  109. Falcao, J. P., Sharp, F. & Sperandio, V. Cell-to-cell signaling in intestinal pathogens. Curr. Issues Intest. Microbiol. 5, 9–17 (2004).

    CAS  PubMed  Google Scholar 

  110. Schultz, M. et al. IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am. J. Physiol. 276, G1461–G1472 (1999).

    CAS  PubMed  Google Scholar 

  111. Ott, S. J. et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53, 685–693 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Duchmann, R. et al. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol. 102, 448–455 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McCann, K. S. The diversity-stability debate. Nature 405, 228–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Naser, S. A., Ghobrial, G., Romero, C. & Valentine, J. F. Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn's disease. Lancet 364, 1039–1044 (2004).

    Article  PubMed  Google Scholar 

  116. Sartor, R. B. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126, 1620–1633 (2004).

    Article  PubMed  Google Scholar 

  117. Kruis, W. Review article: antibiotics and probiotics in inflammatory bowel disease. Aliment. Pharmacol. Ther. 20 (Suppl. 4), 75–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Kalliomaki, M. et al. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357, 1076–1079 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Newman, L. S., Rose, C. S. & Maier, L. A. Sarcoidosis. N. Engl. J. Med. 336, 1224–1234 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Schurmann, M. et al. Results from a genome-wide search for predisposing genes in sarcoidosis. Am. J. Respir. Crit. Care Med. 164, 840–846 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Foley, P. J. et al. Human leukocyte antigen-DRB1 position 11 residues are a common protective marker for sarcoidosis. Am. J. Respir. Cell Mol. Biol. 25, 272–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Rossman, M. D. et al. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am. J. Hum. Genet. 73, 720–735 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Stenzel, A. et al. Patterns of linkage disequilibrium in the MHC region on human chromosome 6p. Hum. Genet. 114, 377–385 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Leipe, D. D., Koonin, E. V. & Aravind, L. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J. Mol. Biol. 343, 1–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Anderson, J. P. et al. Structural, expression, and evolutionary analysis of mouse CIAS1. Gene 338, 25–34 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. O'Connor, W. Jr, Harton, J. A., Zhu, X., Linhoff, M. W. & Ting, J. P. Cutting edge: CIAS1/cryopyrin/PYPAF1/NALP3/CATERPILLER 1.1 is an inducible inflammatory mediator with NF-κB suppressive properties. J. Immunol. 171, 6329–6333 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Albrecht, M., Lengauer, T. & Schreiber, S. Disease-associated variants in PYPAF1 and NOD2 result in similar alterations of conserved sequence. Bioinformatics 19, 2171–2175 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the FP5 Program of the European Commission, Nationales Genomforschungsnetz, Competence Network for Chronic Inflammatory Bowel Disease, Deutsche Forschungsgemeinschaft and Mucosaimmunologie Gemeinnützige Forschungsgesellschaft mbH. S. Nikolaus, S. Ott and T. Lengauer are gratefully acknowledged for their discussion and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schreiber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

BTNL2

CARD15

CTLA4

DLG5

HLA-DRB1

Il2

IL8

Il10

MIP1a

NALP2

NALP6

SLC22A4

SLC22A5

TLR2

OMIM

asthma

atopic eczema

Crohn disease

Sarcoidosis

ulcerative colitis

FURTHER INFORMATION

GenAtlas

Nationales Genomforschungsnetz (German National Genome Research Network)

Glossary

INNATE IMMUNITY

Inborn, non-specific defence mechanisms that recognize pathogen-associated molecular patterns (typically polysaccharides and polynucleotides). Important elements of innate immunity are pattern-recognition receptors that include secreted proteins (for example, C-reactive protein), phagocytosis receptors and the Toll-like receptor system. Most of the CATERPILLER gene products are part of the innate immune system.

ADAPTIVE IMMUNITY

The adaptive immune system adjusts to pathogen structures. Typical examples are the formation of B- or T-memory cells that anticipate certain antigen challenges and therefore mount a fast and highly specific immune answer.

METAGENOME

The comprehensive range of all DNA sequences of a (bacterial) consortium.

RELATIVE SIBLING RISK

The relative risk, in comparison with the general population, for a sibling of an index patient to develop disease.

ULCERATIVE COLITIS

An entity of inflammatory blood disease that mainly affects the colon. It can be differentiated from Crohn disease through its endoscopic appearance and patterns of manifestation.

QUANTITATIVE TRAIT LOCI

Genetic loci or chromosomal regions that contribute to variability in complex quantitative traits (such as plant height or body weight). Quantitative traits are typically affected by several genes and by the environment.

'FREQUENT DISEASE–FREQUENT VARIANT' HYPOTHESIS

The claim that the genetic factors predisposing to, or associated with, a disease of high prevalence should also be frequent in the same population.

SARCOIDOSIS

Granulomatous relapsing inflammatory disease that mainly affects the lung.

ODDS RATIO

The ratio between the odds of an event occurring in two different groups (for example, exposed and non-exposed).

TRANSMISSION DISEQUILIBRIUM TEST

(TDT). This compares the rates of transmission and non-transmission of a given allele or haplotype from parents with one copy of the allele or haplotype in question to their affected offspring. The TDT is robust against population stratification.

POPULATION STRATIFICATION

A particular form of confounding in which a genetic variant is associated with a true disease risk factor that varies in frequency between population strata (ethnic, geographical or social).

HAPLOTYPE BLOCK

A chromosomal region in which groups of allels at different genetic loci are inherited together more often than expected by chance.

ADMIXTURE

The mixture of two or more genetically distinct populations.

LINKAGE DISEQUILIBRIUM

(LD). Deviation of the observed population frequency of haplotypes from the expected under a model of independent segregation. LD is not stable across the genome; that is, areas of high internal LD ('LD blocks') contrast with regions of low LD.

PAMP RECEPTOR

Pathogen-associated molecular pattern receptor — named for a group of proteins with broad specificities, which is often anchored in lipid or glycostructures of pathogens.

CHEMOTACTIC CYTOKINES

Cytokines that induce movement of responsive (immune) cells ('chemotaxis') following the concentration gradient of the mediator.

PANETH CELLS

Secretory cells with a coarsely granular structure found in the basal regions of crypts in the small intestine. The intense expression of bactericidal peptides (cryptdins (murine) or defensins (human), respectively) points to an important role in host defence.

NEUTROPHILS

The most abundant type of granular leukocyte.

ISOTYPE

A class of immunoglobulin protein that is determined by the constant region of the IgH gene that is placed nearest to the joining segments. The isotype can switch during maturation of the B cell.

QUORUM SENSING

A mechanism used by many bacterial pathogens and mutualists to detect crucial bacterial cell numbers in host tissues. Cell densities are indicated by the concentration on autoinducers, which regulate the expression of specific genes.

BIOFILM

Biofilms result from the growth of microbes on surfaces. Bacteria produce extracellular substances that become part of the glycocalyx and provide contact between microorganisms and to the surface.

COMMENSAL

Non-pathogenic microorganisms that live on or within the human organism. They derive a benefit without resulting in injury or a benefit to the host.

PROBIOTICS

Living bacteria that result in health benefits after ingestion.

GRANULOMA

A site of chronic inflammation that is usually triggered by persistent infectious agents or foreign substances. Granulomas are typical for mycobacterial diseases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, S., Rosenstiel, P., Albrecht, M. et al. Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet 6, 376–388 (2005). https://doi.org/10.1038/nrg1607

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1607

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing