Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Caloric restriction mimetics: towards a molecular definition

Abstract

Caloric restriction, be it constant or intermittent, is reputed to have health-promoting and lifespan-extending effects. Caloric restriction mimetics (CRMs) are compounds that mimic the biochemical and functional effects of caloric restriction. In this Opinion article, we propose a unifying definition of CRMs as compounds that stimulate autophagy by favouring the deacetylation of cellular proteins. This deacetylation process can be achieved by three classes of compounds that deplete acetyl coenzyme A (AcCoA; the sole donor of acetyl groups), that inhibit acetyl transferases (a group of enzymes that acetylate lysine residues in an array of proteins) or that stimulate the activity of deacetylases and hence reverse the action of acetyl transferases. A unifying definition of CRMs will be important for the continued development of this class of therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General properties of CRMs.
Figure 2: Links between protein acetylation and autophagy.
Figure 3: AcCoA metabolism and its modulation by pharmacological agents.

Similar content being viewed by others

References

  1. Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span — from yeast to humans. Science 328, 321–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rubinsztein, D. C., Mariño, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Libert, S. & Guarente, L. Metabolic and neuropsychiatric effects of calorie restriction and sirtuins. Annu. Rev. Physiol. 75, 669–684 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Colman, R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mattison, J. A. et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489, 318–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Anson, R. M. et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc. Natl Acad. Sci. USA 100, 6216–6220 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, L., Wang, Z. & Zuo, Z. Chronic intermittent fasting improves cognitive functions and brain structures in mice. PLoS ONE 8, e66069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heilbronn, L. K., Smith, S. R., Martin, C. K., Anton, S. D. & Ravussin, E. Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism. Am. J. Clin. Nutr. 81, 69–73 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Klempel, M. C., Kroeger, C. M., Bhutani, S., Trepanowski, J. F. & Varady, K. A. Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr. J. 11, 4 (2012).

    Article  CAS  Google Scholar 

  10. Magkos, F., Yannakoulia, M., Chan, J. L. & Mantzoros, C. S. Management of the metabolic syndrome and type 2 diabetes through lifestyle modification. Annu. Rev. Nutr. 29, 223–256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roth, L. W. & Polotsky, A. J. Can we live longer by eating less? A review of caloric restriction and longevity. Maturitas 71, 315–319 (2012).

    Article  PubMed  Google Scholar 

  12. Lee, S.-H. & Min, K.-J. Caloric restriction and its mimetics. BMB Rep. 46, 181–187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mariño, G. et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 53, 710–725 (2014).

    Article  PubMed  CAS  Google Scholar 

  14. Feng, Y., He, D., Yao, Z. & Klionsky, D. J. The machinery of macroautophagy. Cell Res. 24, 24–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Choi, A. M. K., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 1845–1846 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Eisenberg, T. et al. Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell. Metab. 19, 431–444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Boya, P. et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell. Biol. 25, 1025–1040 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nature Cell Biol. 11, 1305–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Morselli, E. et al. Caloric restriction and resveratrol promote longevity through the sirtuin-1-dependent induction of autophagy. Cell Death Dis. 1, e10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jia, K. & Levine, B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3, 597–599 (2007).

    Article  PubMed  Google Scholar 

  22. Meléndez, A. et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. Pyo, J.-O. et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nature Commun. 4, 2300 (2013).

    Article  CAS  Google Scholar 

  24. Hebert, A. S. et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 49, 186–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Pietrocola, F. et al. Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. Cell Cycle 11, 3851–3860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wellen, K. E. & Thompson, C. B. A two-way street: reciprocal regulation of metabolism and signalling. Nature Rev. Mol. Cell. Biol. 13, 270–276 (2012).

    Article  CAS  Google Scholar 

  27. Yeh, L. A. & Kim, K. H. Regulation of acetyl-coA carboxylase: properties of coA activation of acetyl-coA carboxylase. Proc. Natl Acad. Sci. USA 77, 3351–3355 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Imamura, H. et al. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc. Natl Acad. Sci. USA 106, 15651–15656 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weinert, B. T. et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol. 10, 716 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takahashi, H., McCaffery, J. M., Irizarry, R. A. & Boeke, J. D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol. Cell 23, 207–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Roberts, D. J., Tan-Sah, V. P., Ding, E. Y., Smith, J. M. & Miyamoto, S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol. Cell 53, 521–533 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mohanti, B. K. et al. Improving cancer radiotherapy with 2-deoxy-D-glucose: Phase I/II clinical trials on human cerebral gliomas. Int. J. Radiat. Oncol. Biol. Phys. 35, 103–111 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Xie, Z. et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60, 1770–1778 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mariño, G. et al. Autophagy is essential for mouse sense of balance. J. Clin. Invest. 120, 2331–2344 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Onakpoya, I., Hung, S. K., Perry, R., Wider, B. & Ernst, E. The use of garcinia extract (hydroxycitric acid) as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. J. Obes. 2011, 509038 (2011).

    Article  PubMed  Google Scholar 

  37. Saito, M. et al. High dose of Garcinia cambogia is effective in suppressing fat accumulation in developing male Zucker obese rats, but highly toxic to the testis. Food Chem. Toxicol. 43, 411–419 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nature Rev. Genet. 10, 32–42 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Scott, I., Webster, B. R., Li, J. H. & Sack, M. N. Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Biochem. J. 443, 655–661 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Ko, M. H. & Puglielli, L. Two endoplasmic reticulum (ER)/ER Golgi intermediate compartment-based lysine acetyltransferases post-translationally regulate BACE1 levels. J. Biol. Chem. 284, 2482–2492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, Q. et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327, 1004–1007 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao, S. et al. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alavez, S., Vantipalli, M. C., Zucker, D. J. S., Klang, I. M. & Lithgow, G. J. Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 472, 226–229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soh, J.-W. et al. Curcumin is an early-acting stage-specific inducer of extended functional longevity in Drosophila. Exp. Gerontol. 48, 229–239 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell. Metab. 11, 35–46 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abbas, S. & Wink, M. Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Med. 75, 216–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, L., Jie, G., Zhang, J. & Zhao, B. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic. Biol. Med. 46, 414–421 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Niu, Y. et al. The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats. Aging Cell 12, 1041–1049 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Rezai-Zadeh, K. et al. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 1214, 177–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Choi, Y. B., Kim, Y. I., Lee, K. S., Kim, B. S. & Kim, D. J. Protective effect of epigallocatechin gallate on brain damage after transient middle cerebral artery occlusion in rats. Brain Res. 1019, 47–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Koh, S.-H. et al. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci. Lett. 395, 103–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, J. et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance. PLoS ONE 9, e87161 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Gupta, S. C., Kismali, G. & Aggarwal, B. B. Curcumin, a component of turmeric: from farm to pharmacy. BioFactors 39, 2–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, H.-S., Quon, M. J. & Kim, J.-A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2, 187–195 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morselli, E. et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 192, 615–629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bauer, M. A. et al. Spermidine promotes mating and fertilization efficiency in model organisms. Cell Cycle 12, 346–352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Soda, K. et al. Long-term oral polyamine intake increases blood polyamine concentrations. J. Nutr. Sci. Vitaminol. 55, 361–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Gupta, V. K. et al. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nature Neurosci. 16, 1453–1460 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Matsumoto, M., Kurihara, S., Kibe, R., Ashida, H. & Benno, Y. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS ONE 6, e23652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kibe, R. et al. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci. Rep. 4, 4548 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Soda, K., Kano, Y., Chiba, F., Koizumi, K. & Miyaki, Y. Increased polyamine intake inhibits age-associated alteration in global DNA methylation and 1,2-dimethylhydrazine-induced tumorigenesis. PLoS ONE 8, e64357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goodwin, A. C. et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc. Natl Acad. Sci. USA 108, 15354–15359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. LaRocca, T. J., Gioscia-Ryan, R. A., Hearon Jr., C. M. & Seals, D. R. The autophagy enhancer spermidine reverses arterial aging. Mech. Ageing Dev. 134, 314–320 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Paul, S. & Kang, S. C. Natural polyamine inhibits mouse skin inflammation and macrophage activation. Inflamm. Res. 62, 681–688 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Soda, K., Dobashi, Y., Kano, Y., Tsujinaka, S. & Konishi, F. Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp. Gerontol. 44, 727–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miller, R. A. et al. An Aging Interventions Testing Program: study design and interim report. Aging Cell 6, 565–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Nadon, N. L. et al. Design of aging intervention studies: the NIA interventions testing program. Age 30, 187–199 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, I. H. & Finkel, T. Regulation of autophagy by the p300 acetyltransferase. J. Biol. Chem. 284, 6322–6328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nakagawa, Y. et al. p300 plays a critical role in maintaining cardiac mitochondrial function and cell survival in postnatal hearts. Circ. Res. 105, 746–754 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Mackeh, R. et al. Reactive oxygen species, AMP-activated protein kinase and the transcription cofactor p300 regulate α-tubulin acetyltransferase-1 (αTAT-1/MEC-17)-dependent microtubule hyperacetylation during cell stress. J. Biol. Chem. 289, 11816–11828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sebti, S. et al. BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy. Proc. Natl Acad. Sci. USA 111, 4115–4120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Devipriya, B. & Kumaradhas, P. Probing the effect of intermolecular interaction and understanding the electrostatic moments of anacardic acid in the active site of p300 enzyme via DFT and charge density analysis. J. Mol. Graph. Model. 34, 57–66 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Seong, Y.-A., Shin, P.-G., Yoon, J.-S., Yadunandam, A. K. & Kim, G.-D. Induction of the endoplasmic reticulum stress and autophagy in human lung carcinoma a549 cells by anacardic acid. Cell Biochem. Biophys. 68, 369–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Hemshekhar, M., Sebastin Santhosh, M., Kemparaju, K. & Girish, K. S. Emerging roles of anacardic acid and its derivatives: a pharmacological overview. Bas. Clin. Pharmacol. Toxicol. 110, 122–132 (2011).

    Article  CAS  Google Scholar 

  76. Lin, S.-Y. et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336, 477–481 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Balasubramanyam, K. et al. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J. Biol. Chem. 279, 33716–33726 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, X. et al. Chemoprevention of 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster cheek pouch carcinogenesis by a 5-lipoxygenase inhibitor, garcinol. Nutr. Cancer 64, 1211–1218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Masullo, M. et al. Direct interaction of garcinol and related polyisoprenylated benzophenones of Garcinia cambogia fruits with the transcription factor STAT1 as a likely mechanism of their inhibitory effect on cytokine signaling pathways. J. Nat. Prod. 77, 543–549 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Quideau, S., Deffieux, D., Douat-Casassus, C. & Pouységu, L. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. Engl. 50, 586–621 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Bowers, E. M. et al. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem. Biol. 17, 471–482 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, Y. et al. Inhibition of p300 impairs FOXP3+ T regulatory cell function and promotes antitumor immunity. Nature Med. 19, 1173–1177 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Webster, B. R. et al. Restricted mitochondrial protein acetylation initiates mitochondrial autophagy. J. Cell Sci. 126, 4843–4849 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Johnson, S. C. et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342, 1524–1528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hamaï, A. & Codogno, P. New targets for acetylation in autophagy. Sci. Signal. 5, e29 (2012).

    Article  CAS  Google Scholar 

  86. Lin, Y. et al. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK. Nature 482, 251–255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Houtkooper, R. H. & Auwerx, J. Exploring the therapeutic space around NAD+. J. Cell Biol. 199, 205–209 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, I. H. et al. A role for the NAD-dependent deacetylase SIRT1 in the regulation of autophagy. Proc. Natl Acad. Sci. 105, 3374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ou, X., Lee, M. R., Huang, X., Messina-Graham, S. & Broxmeyer, H. E. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells 32, 1183–1194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Boily, G. et al. SIRT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 3, e1759 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Guarente, L. Calorie restriction and sirtuins revisited. Genes Dev. 27, 2072–2085 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mercken, E. M. et al. SIRT1 but not its increased expression is essential for lifespan extension in caloric-restricted mice. Aging Cell 13, 193–196 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Someya, S. et al. SIRT3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kanfi, Y. et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Fontana, L., Weiss, E. P., Villareal, D. T., Klein, S. & Holloszy, J. O. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell 7, 681–687 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Hubbard, B. P. et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339, 1216–1219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Park, S.-J. et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421–433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jimenez-Gomez, Y. et al. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell. Metab. 18, 533–545 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Pearson, K. J. et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell. Metab. 8, 157–168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, K., Zhou, R., Wang, B. & Mi, M.-T. Effect of resveratrol on glucose control and insulin sensitivity: a meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 99, 1510–1519 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Goh, K. P. et al. Effects of resveratrol in patients with type 2 diabetes mellitus on skeletal muscle SIRT1 expression and energy expenditure. Int. J. Sport Nutr. Exerc. Metab. 24, 2–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Fiori, J. L. et al. Resveratrol prevents β-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes 62, 3500–3513 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yoshino, J. et al. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell. Metab. 16, 658–664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Soare, A., Weiss, E. P., Holloszy, J. O. & Fontana, L. Multiple dietary supplements do not affect metabolic and cardio-vascular health. Aging 6, 149–157 (2013).

    Article  PubMed Central  Google Scholar 

  107. Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Minor, R. K. et al. SRT1720 improves survival and healthspan of obese mice. Sci. Rep. 1, 70 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Mitchell, S. J. et al. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6, 836–843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Amat, R. et al. SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-γ co-activator-1α (PGC1α) gene in skeletal muscle through the PGC1α autoregulatory loop and interaction with MyoD. J. Biol. Chem. 284, 21872–21880 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sinclair, D. A. & Guarente, L. Small-molecule allosteric activators of sirtuins. Annu. Rev. Pharmacol. Toxicol. 54, 363–380 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ashrafian, H., Horowitz, J. D. & Frenneaux, M. P. Perhexiline. Cardiovasc. Drug Rev. 25, 76–97 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Bordone, L. et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759–767 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Price, N. L. et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell. Metab. 15, 675–690 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Herranz, D. et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nature Commun. 1, 3 (2010).

    Article  CAS  Google Scholar 

  117. Gao, P. et al. Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J. Mol. Med. 92, 347–357 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Timmers, S. et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell. Metab. 14, 612–622 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC1α. Cell 127, 1109–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Blum, C. A. et al. SIRT1 modulation as a novel approach to the treatment of diseases of aging. J. Med. Chem. 54, 417–432 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Yao, T. P. et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Bedford, D. C. et al. Disrupting the CH1 domain structure in the acetyltransferases CBP and p300 results in lean mice with increased metabolic control. Cell. Metab. 14, 219–230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mielgo-Ayuso, J. et al. Effects of dietary supplementation with epigallocatechin-3-gallate on weight loss, energy homeostasis, cardiometabolic risk factors and liver function in obese women: randomised, double-blind, placebo-controlled clinical trial. Br. J. Nutr. 111, 1263–1271 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Mantelingu, K. et al. Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem. Biol. 14, 645–657 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Eliseeva, E. D., Valkov, V., Jung, M. & Jung, M. O. Characterization of novel inhibitors of histone acetyltransferases. Mol. Cancer Ther. 6, 2391–2398 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mariño, G., Niso-Santano, M., Baehrecke, E. H. & Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nature Rev. Mol. Cell. Biol. 15, 81–94 (2014).

    Article  CAS  Google Scholar 

  128. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Mariño, G. et al. Longevity-relevant regulation of autophagy at the level of the acetylproteome. Autophagy 7, 647–649 (2011).

    Article  PubMed  CAS  Google Scholar 

  130. Holmqvist, P.-H. & Mannervik, M. Genomic occupancy of the transcriptional co-activators p300 and CBP. Transcription 4, 18–23 (2013).

    Article  PubMed  Google Scholar 

  131. Contreras, A. U. et al. Deacetylation of p53 induces autophagy by suppressing Bmf expression. J. Cell Biol. 201, 427–437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Füllgrabe, J. et al. The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature 500, 468–471 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Ghosh, H. S., McBurney, M. & Robbins, P. D. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS ONE 5, e9199 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Miller, R. A. et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13, 468–477 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Anisimov, V. N. et al. Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10, 4230–4236 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Neff, F. et al. Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Invest. 123, 3272–3291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wilkinson, J. E. et al. Rapamycin slows aging in mice. Aging Cell 11, 675–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Delvecchio, M., Gaucher, J., Aguilar-Gurrieri, C., Ortega, E. & Panne, D. Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nature Struct. Mol. Biol. 20, 1040–1046 (2013).

    Article  CAS  Google Scholar 

  140. Dominy, J., Puigserver, P. & Cantó, C. In vivo measurement of the acetylation state of sirtuin substrates as a proxy for sirtuin activity. Methods Mol. Biol. 1077, 217–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J. & Kroemer, G. Cell death assays for drug discovery. Nature Rev. Drug Discov. 10, 221–237 (2011).

    Article  CAS  Google Scholar 

  142. Coschigano, K. T., Clemmons, D., Bellush, L. L. & Kopchick, J. J. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608–2613 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Zhou, Y. et al. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc. Natl Acad. Sci. USA 94, 13215–13220 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Arum, O., Bonkowski, M. S., Rocha, J. S. & Bartke, A. The growth hormone receptor gene-disrupted mouse fails to respond to an intermittent fasting diet. Aging Cell 8, 756–760 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Schiaffino, S. & Mammucari, C. Regulation of skeletal muscle growth by the IGF1–Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1, 4 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Florez-McClure, M. L., Hohsfield, L. A., Fonte, G., Bealor, M. T. & Link, C. D. Decreased insulin-receptor signaling promotes the autophagic degradation of β-amyloid peptide in C. elegans. Autophagy 3, 569–580 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Longo, V. D. Linking sirtuins, IGFI signaling, and starvation. Exp. Gerontol. 44, 70–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Yuan, R. et al. Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell 8, 277–287 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Levine, M. E. et al. Low protein intake is associated with a major reduction in IGF1, cancer, and overall mortality in the 65 and younger but not older population. Cell. Metab. 19, 407–417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu, Y. et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl Acad. Sci. USA 110, 20364–20371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bricker, D. K. et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337, 96–100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Phan, T. T. et al. Multi-centre experience on the use of perhexiline in chronic heart failure and refractory angina: old drug, new hope. Eur. J. Heart Fail. 11, 881–886 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Abozguia, K. et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122, 1562–1569 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Guay, C., Madiraju, S. R. M., Aumais, A., Joly, E. & Prentki, M. A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion. J. Biol. Chem. 282, 35657–35665 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Cappello, A. R. et al. The mitochondrial citrate carrier (CIC) is present and regulates insulin secretion by human male gamete. Endocrinology 153, 1743–1754 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Asghar, M. et al. Super CitriMax (HCA-SX) attenuates increases in oxidative stress, inflammation, insulin resistance, and body weight in developing obese Zucker rats. Mol. Cell. Biochem. 304, 93–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Hanai, J.-I., Doro, N., Seth, P. & Sukhatme, V. P. ATP citrate lyase knockdown impacts cancer stem cells in vitro. Cell Death Dis. 4, e696 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhao, Y., Huang, Z.-J., Rahman, M., Luo, Q. & Thorlacius, H. Radicicol, an HSP90 inhibitor, inhibits intestinal inflammation and leakage in abdominal sepsis. J. Surg. Res. 182, 312–318 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. He, Y. et al. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes. Biochem. Biophys. Res. Commun. 436, 169–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Sonoda, H. et al. The protective effect of radicicol against renal ischemia — reperfusion injury in mice. J. Pharmacol. Sci. 112, 242–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Conte, T. C. et al. Radicicol improves regeneration of skeletal muscle previously damaged by crotoxin in mice. Toxicon 52, 146–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Griffin, T. M., Valdez, T. V. & Mestril, R. Radicicol activates heat shock protein expression and cardioprotection in neonatal rat cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 287, H1081–H1088 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Pearce, N. J. et al. The role of ATP citrate-lyase in the metabolic regulation of plasma lipids. Hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076. Biochem. J. 334, 113–119 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Stuart, S. D. et al. A strategically designed small molecule attacks α-ketoglutarate dehydrogenase in tumor cells through a redox process. Cancer Metab. 2, 4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Zachar, Z. et al. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J. Mol. Med. 89, 1137–1148 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Lee, K. C. et al. Formation and anti-tumor activity of uncommon in vitro and in vivo metabolites of CPI-613, a novel anti-tumor compound that selectively alters tumor energy metabolism. Drug Metab. Lett. 5, 163–182 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Kang, S.-K., Cha, S.-H. & Jeon, H.-G. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev. 15, 165–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Sunagawa, Y. et al. A natural p300-specific histone acetyltransferase inhibitor, curcumin, in addition to angiotensin-converting enzyme inhibitor, exerts beneficial effects on left ventricular systolic function after myocardial infarction in rats. Circ. J. 75, 2151–2159 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Morimoto, T. et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J. Clin. Invest. 118, 868–878 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Marcu, M. G. et al. Curcumin is an inhibitor of p300 histone acetylatransferase. Med. Chem. 2, 169–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Balasubramanyam, K. et al. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 279, 51163–51171 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Bimonte, S. et al. Curcumin inhibits tumor growth and angiogenesis in an orthotopic mouse model of human pancreatic cancer. BioMed Res. Int. 2013, 810423 (2013).

    PubMed  PubMed Central  Google Scholar 

  174. Huang, M. T. et al. Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Res. 54, 5841–5847 (1994).

    CAS  PubMed  Google Scholar 

  175. Rao, C. V., Rivenson, A., Simi, B. & Reddy, B. S. Chemoprevention of colon cancer by dietary curcumin. Ann. NY Acad. Sci. 768, 201–204 (1995).

    Article  CAS  PubMed  Google Scholar 

  176. Sharma, R. A. et al. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin. Cancer Res. 7, 1894–1900 (2001).

    CAS  PubMed  Google Scholar 

  177. Seo, K.-I. et al. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol. Nutr. Food Res. 52, 995–1004 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Liao, V. H.-C. et al. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech. Ageing Dev. 132, 480–487 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Suckow, B. K. & Suckow, M. A. Lifespan extension by the antioxidant curcumin in Drosophila melanogaster. Int. J. Biomed. Sci. 2, 402–405 (2006).

    PubMed  PubMed Central  Google Scholar 

  180. Ryu, M.-J. et al. Natural derivatives of curcumin attenuate the Wnt/β-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochem. Biophys. Res. Commun. 377, 1304–1308 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Shakibaei, M. et al. Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways. PLoS ONE 8, e57218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kubota, M. et al. Preventive effects of curcumin on the development of azoxymethane-induced colonic preneoplastic lesions in male C57BL/KsJ–db/db obese mice. Nutr. Cancer 64, 72–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Jang, H.-J., Ridgeway, S. D. & Kim, J.-A. Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin resistance and endothelial dysfunction. Am. J. Physiol. Endocrinol. Metab. 305, E1444–E1451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chen, Y.-K. et al. Effects of green tea polyphenol (–)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. J. Agr. Food Chem. 59, 11862–11871 (2011).

    Article  CAS  Google Scholar 

  185. Rajendran, P., Ho, E., Williams, D. E. & Dashwood, R. H. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin. Epigenet. 3, 4 (2011).

    Article  CAS  Google Scholar 

  186. Wu, Y. et al. Anacardic acid (6-pentadecylsalicylic acid) inhibits tumor angiogenesis by targeting Src/FAK/Rho GTPases signaling pathway. J. Pharmacol. Exp. Ther. 339, 403–411 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Li, F. et al. Garcinol, a polyisoprenylated benzophenone modulates multiple proinflammatory signaling cascades leading to the suppression of growth and survival of head and neck carcinoma. Cancer Prev. Res. 6, 843–854 (2013).

    Article  CAS  Google Scholar 

  188. Arif, M. et al. Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J. Med. Chem. 52, 267–277 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Mai, A. et al. Small-molecule inhibitors of histone acetyltransferase activity: identification and biological properties. J. Med. Chem. 49, 6897–6907 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Chimenti, F. et al. A novel histone acetyltransferase inhibitor modulating GCN5 network: cyclopentylidene-[4-(4′-chlorophenyl)thiazol-2-yl)hydrazone. J. Med. Chem. 52, 530–536 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Jara, J. A. et al. Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell lines. Validation in vivo in singenic mice. J. Med. Chem. 57, 2440–2454 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Lu, Y. et al. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur. J. Pharmacol. 641, 102–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kim, M.-J. et al. Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol. Nutr. Food Res. 55, 1798–1808 (2011).

    Article  CAS  PubMed  Google Scholar 

  194. Lissa, D. et al. Resveratrol and aspirin eliminate tetraploid cells for anticancer chemoprevention. Proc. Natl Acad. Sci. USA 111, 3020–3025 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lu, S.-P., Kato, M. & Lin, S.-J. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae. J. Biol. Chem. 284, 17110–17119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Belenky, P. et al. Nicotinamide riboside promotes SIR2 silencing and extends lifespan via NRK and URH1/PNP1/MEU1 pathways to NAD+. Cell 129, 473–484 (2007).

    Article  CAS  PubMed  Google Scholar 

  197. Dong, J. et al. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1. J. Lipid Res. 55, 363–374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Pratheeshkumar, P. et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS ONE 7, e47516 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Angst, E. et al. The flavonoid quercetin inhibits pancreatic cancer growth in vitro and in vivo. Pancreas 42, 223–229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yum, S. et al. Piceatannol, a hydroxystilbene natural product, stabilizes HIF1α protein by inhibiting HIF prolyl hydroxylase. Eur. J. Pharmacol. 699, 124–131 (2013).

    Article  CAS  PubMed  Google Scholar 

  201. Kinoshita, Y. et al. Effect of long-term piceatannol treatment on eNOS levels in cultured endothelial cells. Biochem. Biophys. Res. Commun. 430, 1164–1168 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Kwon, J. Y. et al. Piceatannol, natural polyphenolic stilbene, inhibits adipogenesis via modulation of mitotic clonal expansion and insulin receptor-dependent insulin signaling in early phase of differentiation. J. Biol. Chem. 287, 11566–11578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Minakawa, M., Miura, Y. & Yagasaki, K. Piceatannol, a resveratrol derivative, promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and suppresses blood glucose levels in type 2 diabetic model db/db mice. Biochem. Biophys. Res. Commun. 422, 469–475 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Ligue contre le Cancer (équipe labellisée), Agence National de la Recherche, Association pour la Recherche sur le Cancer, Cancéropôle Ile-de-France, Institut National du Cancer (INCa), Fondation Bettencourt-Schueller, Fondation de France, Fondation pour la Recherche Médicale, the European Commission (ArtForce), the European Research Council, the LabEx Immuno-Oncology, the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (Socrate), Cancer Research and Personalized Medicine (Carpem) and the Paris Alliance of Cancer Research Institutes. T.E. is a recipient of an APART (Austrian Programme for Advanced Research and Technology) fellowship of the Austrian Academy of Sciences at the Institute of Molecular Biosciences, University of Graz, Austria. F.M. is supported by the Austrian Science Fund FWF (grants LIPOTOX, I1000, P23490-B12 and P24381-B20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank Madeo or Guido Kroemer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Gene Ontology Consortium

PowerPoint slides

Glossary

Autophagy

A neologism (from the Greek 'auto' (self) and 'phagein' (to eat)) that describes the capacity of cells to sequester portions of their cytoplasm and to subject them to lysosomal degradation.

Caloric restriction

A dietary regimen that is based on low calorie intake without malnutrition.

Caloric restriction mimetics

Pharmaceutical agents that induce the same biochemical alterations as does caloric restriction.

Healthspan

The length of time that an individual is in optimal health.

Hyperinsulinaemic–euglycaemic clamp studies

A physiological test used on whole animals to measure insulin-stimulated glucose uptake by all tissues of the body, hence measuring insulin sensitivity or resistance.

Mitophagy

Specific autophagic removal of mitochondria, which are usually dysfunctional.

Rapamycin

A macrolide antibiotic produced by the bacteria Streptomyces hygroscopicus that inhibits a negative regulator of autophagy, namely the mechanistic target of mammalian target of rapamycin complex 1 (mTORC1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madeo, F., Pietrocola, F., Eisenberg, T. et al. Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov 13, 727–740 (2014). https://doi.org/10.1038/nrd4391

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4391

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research