Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The secret ally: immunostimulation by anticancer drugs

Key Points

  • Throughout the past century, conventional anticancer chemotherapeutics have been used based on their ability to selectively kill neoplastic cells while sparing their normal counterparts. More recently, targeted anticancer agents have been developed following the identification of cancer cell-specific molecular targets.

  • The classical notion that cancer constitutes a cell-autonomous genetic disease has progressively been invalidated, along with the understanding that the tumour microenvironment (including stromal and immune components) is a crucial determinant for tumour progression and response to therapy.

  • Local and systemic indicators of an ongoing response as well as biomarkers that predict the propensity of the immune system to engage in an anticancer immune response have been correlated with therapeutic outcome.

  • Several conventional and targeted anticancer chemotherapeutics can induce tumour-specific immune responses, either by triggering immunogenic cancer cell death or by eliciting innate or cognate immune effector mechanisms.

  • Conventional chemotherapeutics and targeted agents ameliorate the efficacy of several types of anticancer immunotherapy, including vaccination approaches and cytokine-mediated immunostimulation.

  • Immunochemotherapy currently appears to be a promising strategy for the eradication of cancer. It can be anticipated that the elucidation of the intricate crosstalk among cancer, stromal cells and immune cells will provide additional targets for anticancer therapy.

Abstract

It has recently become clear that the tumour microenvironment, and in particular the immune system, has a crucial role in modulating tumour progression and response to therapy. Indicators of an ongoing immune response, such as the composition of the intratumoural immune infiltrate, as well as polymorphisms in genes encoding immune modulators, have been correlated with therapeutic outcome. Moreover, several anticancer agents — including classical chemotherapeutics and targeted compounds — stimulate tumour-specific immune responses either by inducing the immunogenic death of tumour cells or by engaging immune effector mechanisms. Here, we discuss the molecular and cellular circuitries whereby cytotoxic agents can activate the immune system against cancer, and their therapeutic implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms through which conventional chemotherapeutics affect the immune system.
Figure 2: Mechanisms through which targeted anticancer agents affect the immune system.
Figure 3: Requirements for successful immunochemotherapy.

Similar content being viewed by others

References

  1. Czernilofsky, A. P. et al. Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for gene product. Nature 287, 198–203 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Roussel, M. et al. Three new types of viral oncogene of cellular origin specific for haematopoietic cell transformation. Nature 281, 452–455 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Chabner, B. A. & Roberts, T. G. Jr. Chemotherapy and the war on cancer. Nature Rev. Cancer 5, 65–72 (2005).

    Article  CAS  Google Scholar 

  4. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  5. Nowell, P. & Hungerford, D. A minute chromosome in chronic granulocytic leukemia. Science 132, 1497 (1960).

    Google Scholar 

  6. Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).

    Article  CAS  PubMed  Google Scholar 

  7. Stam, K. et al. Evidence of a new chimeric bcr/c-abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. N. Engl. J. Med. 313, 1429–1433 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Ben-Neriah, Y., Daley, G. Q., Mes-Masson, A. M., Witte, O. N. & Baltimore, D. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233, 212–214 (1986). The studies in Ref. 7 and Ref. 8 reported the molecular characterization of the transcript and protein products of the BCR–ABL gene, laying the foundations of targeted anticancer therapy.

    Article  CAS  PubMed  Google Scholar 

  9. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nature Rev. Drug Discov. 1, 493–502 (2002).

    Article  CAS  Google Scholar 

  10. Apperley, J. F. et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor β. N. Engl. J. Med. 347, 481–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    CAS  PubMed  Google Scholar 

  12. Dowell, J., Minna, J. D. & Kirkpatrick, P. Erlotinib hydrochloride. Nature Rev. Drug Discov. 4, 13–14 (2005).

    Article  CAS  Google Scholar 

  13. Moy, B., Kirkpatrick, P., Kar, S. & Goss, P. Lapatinib. Nature Rev. Drug Discov. 6, 431–432 (2007).

    Article  CAS  Google Scholar 

  14. Blankenstein, T. The role of tumor stroma in the interaction between tumor and immune system. Curr. Opin. Immunol. 17, 180–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Rev. Drug Discov. 3, 391–400 (2004).

    Article  CAS  Google Scholar 

  16. Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nature Rev. Immunol. 8, 59–73 (2008).

    Article  CAS  Google Scholar 

  17. Schilsky, R. L. Personalized medicine in oncology: the future is now. Nature Rev. Drug Discov. 9, 363–366 (2010).

    Article  CAS  Google Scholar 

  18. Zitvogel, L., Kepp, O. & Kroemer, G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nature Rev. Clin. Oncol. 8, 151–160 (2011).

    Article  CAS  Google Scholar 

  19. Lenz, G. et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 359, 2313–2323 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Nardin, A. et al. Dacarbazine promotes stromal remodeling and lymphocyte infiltration in cutaneous melanoma lesions. J. Invest. Dermatol. 131, 1896–1905 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Staaf, J. et al. Identification of subtypes in human epidermal growth factor receptor 2-positive breast cancer reveals a gene signature prognostic of outcome. J. Clin. Oncol. 28, 1813–1820 (2010).

    Article  PubMed  Google Scholar 

  22. Thurlow, J. K. et al. Spectral clustering of microarray data elucidates the roles of microenvironment remodeling and immune responses in survival of head and neck squamous cell carcinoma. J. Clin. Oncol. 28, 2881–2888 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Desmedt, C. et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin. Cancer Res. 14, 5158–5165 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Desmedt, C. et al. Multifactorial approach to predicting resistance to anthracyclines. J. Clin. Oncol. 29, 1578–1586 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Paulson, K. G. et al. Transcriptome-wide studies of Merkel cell carcinoma and validation of intratumoral CD8+ lymphocyte invasion as an independent predictor of survival. J. Clin. Oncol. 29, 1539–1546 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eerola, A. K., Soini, Y. & Paakko, P. A high number of tumor-infiltrating lymphocytes are associated with a small tumor size, low tumor stage, and a favorable prognosis in operated small cell lung carcinoma. Clin. Cancer Res. 6, 1875–1881 (2000).

    CAS  PubMed  Google Scholar 

  27. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kamper, P. et al. Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein–Barr virus status in classical Hodgkin's lymphoma. Haematologica 96, 269–276 (2011).

    Article  PubMed  Google Scholar 

  29. Komohara, Y. et al. Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma. Cancer Sci. 102, 1424–1431 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, C. H. et al. Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin. Cancer Res. 14, 1423–1430 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Ding, T. et al. High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection. Hum. Pathol. 40, 381–389 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, B. C. et al. Tumor-associated macrophages infiltration is associated with peritumoral lymphangiogenesis and poor prognosis in lung adenocarcinoma. Med. Oncol. 28, 1447–1452 (2010).

    Article  PubMed  Google Scholar 

  33. Nonomura, N. et al. Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int. 107, 1918–1922 (2011).

    Article  PubMed  Google Scholar 

  34. Kinouchi, M. et al. Infiltration of CD14-positive macrophages at the invasive front indicates a favorable prognosis in colorectal cancer patients with lymph node metastasis. Hepatogastroenterology 58, 352–358 (2011).

    PubMed  Google Scholar 

  35. Ladoire, S. et al. Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating Foxp3+ regulatory T cells. Clin. Cancer Res. 14, 2413–2420 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Ladoire, S. et al. In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. J. Pathol. 224, 389–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. De Monte, L. et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J. Exp. Med. 208, 469–478 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pedroza-Gonzalez, A. et al. Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation. J. Exp. Med. 208, 479–490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fu, J. et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132, 2328–2339 (2007).

    Article  PubMed  Google Scholar 

  40. Shen, Z. et al. Higher intratumoral infiltrated Foxp3+ Treg numbers and Foxp3+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. J. Cancer Res. Clin. Oncol. 136, 1585–1595 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Petersen, R. P. et al. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107, 2866–2872 (2006).

    Article  PubMed  Google Scholar 

  42. Correale, P. et al. Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J. Immunother. 33, 435–441 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ladoire, S., Martin, F. & Ghiringhelli, F. Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol. Immunother. 60, 909–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Halama, N. et al. Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res. 71, 5670–5677 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Bonertz, A. et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J. Clin. Invest. 119, 3311–3321 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sconocchia, G. et al. Tumor infiltration by FcγRIII (CD16)+ myeloid cells is associated with improved survival in patients with colorectal carcinoma. Int. J. Cancer 128, 2663–2672 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Alvaro-Naranjo, T. et al. Tumor-infiltrating cells as a prognostic factor in Hodgkin's lymphoma: a quantitative tissue microarray study in a large retrospective cohort of 267 patients. Leuk. Lymphoma 46, 1581–1591 (2005).

    Article  PubMed  Google Scholar 

  48. Polcher, M. et al. Foxp3+ cell infiltration and granzyme B+/Foxp3+ cell ratio are associated with outcome in neoadjuvant chemotherapy-treated ovarian carcinoma. Cancer Immunol. Immunother. 59, 909–919 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Distel, L. V. et al. Tumour infiltrating lymphocytes in squamous cell carcinoma of the oro- and hypopharynx: prognostic impact may depend on type of treatment and stage of disease. Oral Oncol. 45, e167–e174 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Wu, X. J. et al. Circulating antibodies to carcinoembryonic antigen related to improved recurrence-free survival of patients with colorectal carcinoma. J. Int. Med. Res. 39, 838–845 (2011).

    Article  PubMed  Google Scholar 

  51. Ait-Tahar, K. et al. Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood 115, 3314–3319 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Albertus, D. L. et al. AZGP1 autoantibody predicts survival and histone deacetylase inhibitors increase expression in lung adenocarcinoma. J. Thorac. Oncol. 3, 1236–1244 (2008).

    Article  PubMed  Google Scholar 

  53. Hamanaka, Y. et al. Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int. J. Cancer 103, 97–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Touze, A. et al. High levels of antibodies against Merkel cell polyomavirus identify a subset of patients with Merkel cell carcinoma with better clinical outcome. J. Clin. Oncol. 29, 1612–1619 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Delahaye, N. F. et al. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nature Med. 17, 700–707 (2011). The outcome of imatinib treatment in patients with GISTs was found to be influenced by the expression pattern of alternatively spliced NKp30 isoforms, thus unveiling an immune mechanism underlying at least part of the therapeutic efficacy of imatinib.

    Article  CAS  PubMed  Google Scholar 

  56. Cerhan, J. R. et al. Prognostic significance of host immune gene polymorphisms in follicular lymphoma survival. Blood 109, 5439–5446 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kleinrath, T., Gassner, C., Lackner, P., Thurnher, M. & Ramoner, R. Interleukin-4 promoter polymorphisms: a genetic prognostic factor for survival in metastatic renal cell carcinoma. J. Clin. Oncol. 25, 845–851 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Sellick, G. S. et al. Scan of 977 nonsynonymous SNPs in CLL4 trial patients for the identification of genetic variants influencing prognosis. Blood 111, 1625–1633 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Domingo-Domenech, E. et al. Impact of interleukin-10 polymorphisms (−1082 and −3575) on the survival of patients with lymphoid neoplasms. Haematologica 92, 1475–1481 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. DeMichele, A. et al. Host genetic variants in the interleukin-6 promoter predict poor outcome in patients with estrogen receptor-positive, node-positive breast cancer. Cancer Res. 69, 4184–4191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schoof, N. et al. Favorable impact of the interleukin-4 receptor allelic variant I75 on the survival of diffuse large B-cell lymphoma patients demonstrated in a large prospective clinical trial. Ann. Oncol. 20, 1548–1554 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Bibeau, F. et al. Impact of FcγRIIa–FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J. Clin. Oncol. 27, 1122–1129 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Ferris, R. L., Jaffee, E. M. & Ferrone, S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J. Clin. Oncol. 28, 4390–4399 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, B., Kokhaei, P., Mellstedt, H. & Liljefors, M. FcγR polymorphisms and clinical outcome in colorectal cancer patients receiving passive or active antibody treatment. Int. J. Oncol. 37, 1599–1606 (2010).

    PubMed  Google Scholar 

  65. Wilson, N. S. et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 19, 101–113 (2011). Fcγ receptors on tumour-associated leukocytes were shown to provide a dynamic platform that facilitates the monoclonal antibody-dependent activation of death receptor 5 on tumour cells, and hence their death.

    Article  CAS  PubMed  Google Scholar 

  66. Menard, C. et al. Natural killer cell IFN-γ levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res. 69, 3563–3569 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Gulley, J. L. et al. Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol. Immunother. 59, 663–674 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Liu, W. M., Fowler, D. W., Smith, P. & Dalgleish, A. G. Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. Br. J. Cancer 102, 115–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Nowak, A. K. et al. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J. Immunol. 170, 4905–4913 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Nowak, A. K., Robinson, B. W. & Lake, R. A. Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res. 63, 4490–4496 (2003).

    CAS  PubMed  Google Scholar 

  71. Mundy-Bosse, B. L. et al. Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res. 71, 5101–5110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vincent, J. et al. 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70, 3052–3061 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Lesterhuis, W. J. et al. Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J. Clin. Invest. 121, 3100–3108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Weiner, H. L. & Cohen, J. A. Treatment of multiple sclerosis with cyclophosphamide: critical review of clinical and immunologic effects. Mult. Scler. 8, 142–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Medina-Echeverz, J. et al. Successful colon cancer eradication after chemoimmunotherapy is associated with profound phenotypic change of intratumoral myeloid cells. J. Immunol. 186, 807–815 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56, 641–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Taieb, J. et al. Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J. Immunol. 176, 2722–2729 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Viaud, S. et al. Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res. 71, 661–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Schiavoni, G. et al. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res. 71, 768–778 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Guerriero, J. L. et al. DNA alkylating therapy induces tumor regression through an HMGB1-mediated activation of innate immunity. J. Immunol. 186, 3517–3526 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Hirschhorn-Cymerman, D. et al. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J. Exp. Med. 206, 1103–1116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Diaz-Montero, C. M. et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother. 58, 49–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Ge, Y. et al. Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunol. Immunother. 14 Sep 2011 (doi:10.1007/s00262-011-1106-3).

  84. Ma, Y. et al. Contribution of IL-17-producing γδ T cells to the efficacy of anticancer chemotherapy. J. Exp. Med. 208, 491–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mattarollo, S. R. et al. Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res. 71, 4809–4820 (2011). The studies in Ref. 84 and Ref. 85 unravel the cellular dynamics and molecular determinants underlying the immune infiltration of experimental breast adenocarcinomas and fibrosarcomas in response to anthracycline-based chemotherapy, highlighting a crucial early role for IL-17-producing γδ T cells.

    Article  CAS  PubMed  Google Scholar 

  86. Haggerty, T. J. et al. Topoisomerase inhibitors modulate expression of melanocytic antigens and enhance T cell recognition of tumor cells. Cancer Immunol. Immunother. 60, 133–144 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Tesniere, A. et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29, 482–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Martins, I. et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 30, 1147–1158 (2011). The release of ATP by dying cancer cells, which is required for immunogenic cell death, relies on the cellular machinery for autophagy, as demonstrated in human and murine genetic models of autophagy deficiency in vitro and in vivo.

    Article  CAS  PubMed  Google Scholar 

  89. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med. 13, 54–61 (2007). This was the first demonstration that apoptotic cell death can occur in an immunogenic fashion, provided that the endoplasmic reticulum chaperone protein calreticulin is exposed on the surface of dying cells.

    Article  CAS  PubMed  Google Scholar 

  90. Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nature Rev. Mol. Cell Biol. 12, 385–392 (2011).

    Article  CAS  Google Scholar 

  91. Zhu, Y., Liu, N., Xiong, S. D., Zheng, Y. J. & Chu, Y. W. CD4+Foxp3+ regulatory T-cell impairment by paclitaxel is independent of toll-like receptor 4. Scand. J. Immunol. 73, 301–308 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Ramakrishnan, R. et al. Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J. Clin. Invest. 120, 1111–1124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kodumudi, K. N. et al. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin. Cancer Res. 16, 4583–4594 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Niiya, M. et al. Induction of TNF-α, uPA, IL-8 and MCP-1 by doxorubicin in human lung carcinoma cells. Cancer Chemother. Pharmacol. 52, 391–398 (2003).

    Article  PubMed  Google Scholar 

  95. Geller, M. A., Bui-Nguyen, T. M., Rogers, L. M. & Ramakrishnan, S. Chemotherapy induces macrophage chemoattractant protein-1 production in ovarian cancer. Int. J. Gynecol. Cancer 20, 918–925 (2010).

    Article  PubMed  Google Scholar 

  96. Qian, D. Z. et al. CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel-induced cytotoxicity. Prostate 70, 433–442 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Fujimoto, H. et al. Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int. J. Cancer 125, 1276–1284 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Kovarova, L. et al. Dendritic cell counts and their subsets during treatment of multiple myeloma. Neoplasma 54, 297–303 (2007).

    CAS  PubMed  Google Scholar 

  99. Shurin, G. V., Tourkova, I. L., Kaneno, R. & Shurin, M. R. Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. J. Immunol. 183, 137–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Thomas-Schoemann, A. et al. Bystander effect of vinorelbine alters antitumor immune response. Int. J. Cancer 129, 1511–1518 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Purcell, W. T. & Ettinger, D. S. Novel antifolate drugs. Curr. Oncol. Rep. 5, 114–125 (2003).

    Article  PubMed  Google Scholar 

  102. Gibbs, D. & Jackman, A. Pemetrexed disodium. Nature Rev. Drug Discov. 5, S16–S17 (2005).

    Article  Google Scholar 

  103. Cronstein, B. N. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol. Rev. 57, 163–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Kaneno, R., Shurin, G. V., Tourkova, I. L. & Shurin, M. R. Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations. J. Transl. Med. 7, 58 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hartmann, J. T., Haap, M., Kopp, H. G. & Lipp, H. P. Tyrosine kinase inhibitors — a review on pharmacology, metabolism and side effects. Curr. Drug Metab. 10, 470–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Monsuez, J. J., Charniot, J. C., Vignat, N. & Artigou, J. Y. Cardiac side-effects of cancer chemotherapy. Int. J. Cardiol. 144, 3–15 (2010).

    Article  PubMed  Google Scholar 

  107. Chan, G. & Pilichowska, M. Complete remission in a patient with acute myelogenous leukemia treated with erlotinib for non small-cell lung cancer. Blood 110, 1079–1080 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Pitini, V., Arrigo, C. & Altavilla, G. Erlotinib in a patient with acute myelogenous leukemia and concomitant non-small-cell lung cancer. J. Clin. Oncol. 26, 3645–3646 (2008). In the studies published in reference 107 and reference 108, patients who were simultaneously affected by lung cancer and leukaemia were treated with erlotinib or gefitinib for the first condition and experienced complete leukaemic remission; this demonstrated the existence of therapeutic off-target mechanisms ignited by EGFR inhibitors.

    Article  PubMed  Google Scholar 

  109. Boehrer, S. et al. Erlotinib exhibits antineoplastic off-target effects in AML and MDS: a preclinical study. Blood 111, 2170–2180 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Boehrer, S. et al. Erlotinib antagonizes constitutive activation of SRC family kinases and mTOR in acute myeloid leukemia. Cell Cycle 10, 3168–3175 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Stegmaier, K. et al. Gefitinib induces myeloid differentiation of acute myeloid leukemia. Blood 106, 2841–2848 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pollack, B. P., Sapkota, B. & Cartee, T. V. Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes. Clin. Cancer Res. 17, 4400–4413 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Garrido, G. et al. Induction of immunogenic apoptosis by blockade of epidermal growth factor receptor activation with a specific antibody. J. Immunol. 187, 4954–4966 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Luo, Q. et al. Erlotinib inhibits T-cell-mediated immune response via down-regulation of the c-Raf/ERK cascade and Akt signaling pathway. Toxicol. Appl. Pharmacol. 251, 130–136 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Chen, C. I., Maecker, H. T. & Lee, P. P. Development and dynamics of robust T-cell responses to CML under imatinib treatment. Blood 111, 5342–5349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Catellani, S., Pierri, I., Gobbi, M., Poggi, A. & Zocchi, M. R. Imatinib treatment induces CD5+ B lymphocytes and IgM natural antibodies with anti-leukemic reactivity in patients with chronic myelogenous leukemia. PLoS ONE 6, e18925 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Larmonier, N. et al. Imatinib mesylate inhibits CD4+CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL tumors. J. Immunol. 181, 6955–6963 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Balachandran, V. P. et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nature Med. 17, 1094–1100 (2011). This article demonstrates that the immunostimulatory properties of imatinib (at least in part) result from a shift in the ratio between effector T cells and T reg cells; this ratio is secondary to the imatinib-mediated downregulation of indoleamine 2,3-dioxygenase in cancer cells.

    Article  CAS  PubMed  Google Scholar 

  119. Gao, H. et al. Imatinib mesylate suppresses cytokine synthesis by activated CD4 T cells of patients with chronic myelogenous leukemia. Leukemia 19, 1905–1911 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Seggewiss, R. et al. Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner. Blood 105, 2473–2479 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Leder, C., Ortler, S., Seggewiss, R., Einsele, H. & Wiendl, H. Modulation of T-effector function by imatinib at the level of cytokine secretion. Exp. Hematol. 35, 1266–1271 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Sinai, P. et al. Imatinib mesylate inhibits antigen-specific memory CD8 T cell responses in vivo. J. Immunol. 178, 2028–2037 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Adotevi, O. et al. A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients. J. Immunother. 33, 991–998 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Ko, J. S. et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148–2157 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Finke, J. H. et al. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin. Cancer Res. 14, 6674–6682 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Desar, I. M. et al. Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients. Int. J. Cancer 129, 507–512 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Xin, H. et al. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 69, 2506–2513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dalton, J. E. et al. Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice. J. Clin. Invest. 120, 1204–1216 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hipp, M. M. et al. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood 111, 5610–5620 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Fei, F. et al. Dasatinib inhibits the proliferation and function of CD4+CD25+ regulatory T cells. Br. J. Haematol. 144, 195–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Fei, F. et al. Dasatinib exerts an immunosuppressive effect on CD8+ T cells specific for viral and leukemia antigens. Exp. Hematol. 36, 1297–1308 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Weichsel, R. et al. Profound inhibition of antigen-specific T-cell effector functions by dasatinib. Clin. Cancer Res. 14, 2484–2491 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Schade, A. E. et al. Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood 111, 1366–1377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fraser, C. K. et al. Dasatinib inhibits recombinant viral antigen-specific murine CD4+ and CD8+ T-cell responses and NK-cell cytolytic activity in vitro and in vivo. Exp. Hematol. 37, 256–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Fraser, C. K. et al. Dasatinib inhibits the secretion of TNF-α following TLR stimulation in vitro and in vivo. Exp. Hematol. 37, 1435–1444 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Blake, S., Hughes, T. P., Mayrhofer, G. & Lyons, A. B. The Src/ABL kinase inhibitor dasatinib (BMS-354825) inhibits function of normal human T-lymphocytes in vitro. Clin. Immunol. 127, 330–339 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Chen, J. et al. Nilotinib hampers the proliferation and function of CD8+ T lymphocytes through inhibition of T cell receptor signalling. J. Cell. Mol. Med. 12, 2107–2118 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Salih, J. et al. The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int. J. Cancer 127, 2119–2128 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Nencioni, A. et al. Proteasome inhibitor bortezomib modulates TLR4-induced dendritic cell activation. Blood 108, 551–558 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Berges, C. et al. Proteasome inhibition suppresses essential immune functions of human CD4+ T cells. Immunology 124, 234–246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Basler, M., Lauer, C., Beck, U. & Groettrup, M. The proteasome inhibitor bortezomib enhances the susceptibility to viral infection. J. Immunol. 183, 6145–6150 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Heider, U. et al. Decrease in CD4+ T-cell counts in patients with multiple myeloma treated with bortezomib. Clin. Lymphoma Myeloma Leuk. 10, 134–137 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Blanco, B. et al. Treatment with bortezomib of human CD4+ T cells preserves natural regulatory T cells and allows the emergence of a distinct suppressor T-cell population. Haematologica 94, 975–983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nature Rev. Drug Discov. 8, 627–644 (2009).

    Article  CAS  Google Scholar 

  145. Koyasu, S. The role of PI3K in immune cells. Nature Immunol. 4, 313–319 (2003).

    Article  CAS  Google Scholar 

  146. Carrington, E. M. et al. BH3 mimetics antagonizing restricted prosurvival Bcl-2 proteins represent another class of selective immune modulatory drugs. Proc. Natl Acad. Sci. USA 107, 10967–10971 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Weiner, L. M., Surana, R. & Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Rev. Immunol. 10, 317–327 (2010). This article summarizes recent advances in the development and use of immunostimulatory monoclonal antibodies for anticancer therapy.

    Article  CAS  Google Scholar 

  148. Winiarska, M., Glodkowska-Mrowka, E., Bil, J. & Golab, J. Molecular mechanisms of the antitumor effects of anti-CD20 antibodies. Front. Biosci. 16, 277–306 (2011).

    Article  CAS  Google Scholar 

  149. Zipfel, P. F. & Skerka, C. Complement regulators and inhibitory proteins. Nature Rev. Immunol. 9, 729–740 (2009).

    Article  CAS  Google Scholar 

  150. Marechal, R. et al. Putative contribution of CD56 positive cells in cetuximab treatment efficacy in first-line metastatic colorectal cancer patients. BMC Cancer 10, 340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Banerjee, D. et al. Enhanced T-cell responses to glioma cells coated with the anti-EGF receptor antibody and targeted to activating FcγRs on human dendritic cells. J. Immunother. 31, 113–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. zum Büschenfelde, C. M., Hermann, C., Schmidt, B., Peschel, C. & Bernhard, H. Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Res. 62, 2244–2247 (2002).

    PubMed  Google Scholar 

  153. Arnould, L. et al. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br. J. Cancer 94, 259–267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wada, J. et al. The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions. Anticancer Res. 29, 881–888 (2009).

    CAS  PubMed  Google Scholar 

  155. Manzoni, M. et al. Immunological effects of bevacizumab-based treatment in metastatic colorectal cancer. Oncology 79, 187–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Osada, T. et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother. 57, 1115–1124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shrimali, R. K. et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70, 6171–6180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pander, J. et al. Activation of tumor-promoting type 2 macrophages by EGFR-targeting antibody cetuximab. Clin. Cancer Res. 17, 5668–5673 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kline, J. & Gajewski, T. F. Clinical development of mAbs to block the PD1 pathway as an immunotherapy for cancer. Curr. Opin. Investig. Drugs 11, 1354–1359 (2010).

    CAS  PubMed  Google Scholar 

  161. Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med. 207, 2175–2186 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  163. Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187–2194 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang, W. et al. PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+CD25Hi regulatory T cells. Int. Immunol. 21, 1065–1077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yuan, J. et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc. Natl Acad. Sci. USA 105, 20410–20415 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Jiang, Q. et al. mTOR kinase inhibitor AZD8055 enhances the immunotherapeutic activity of an agonist CD40 antibody in cancer treatment. Cancer Res. 71, 4074–4084 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Norton, J. T., Hayashi, T., Crain, B., Corr, M. & Carson, D. A. Role of IL-1 receptor-associated kinase-M (IRAK-M) in priming of immune and inflammatory responses by nitrogen bisphosphonates. Proc. Natl Acad. Sci. USA 108, 11163–11168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Rack, B. et al. Effect of zoledronate on persisting isolated tumour cells in patients with early breast cancer. Anticancer Res. 30, 1807–1813 (2010).

    CAS  PubMed  Google Scholar 

  171. Cabillic, F. et al. Aminobisphosphonate-pretreated dendritic cells trigger successful Vγ9Vδ2 T cell amplification for immunotherapy in advanced cancer patients. Cancer Immunol. Immunother. 59, 1611–1619 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Gyrd-Hansen, M. & Meier, P. IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nature Rev. Cancer 10, 561–574 (2010).

    Article  CAS  Google Scholar 

  173. Dougan, M. et al. IAP inhibitors enhance co-stimulation to promote tumor immunity. J. Exp. Med. 207, 2195–2206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Schmudde, M. et al. Histone deacetylase inhibitors sensitize tumour cells for cytotoxic effects of natural killer cells. Cancer Lett. 272, 110–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Lesterhuis, W. J., Haanen, J. B. & Punt, C. J. Cancer immunotherapy — revisited. Nature Rev. Drug Discov. 10, 591–600 (2011).

    Article  CAS  Google Scholar 

  176. Emens, L. A. et al. Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte–macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J. Clin. Oncol. 27, 5911–5918 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Arlen, P. M. et al. A randomized Phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin. Cancer Res. 12, 1260–1269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Garnett, C. T., Schlom, J. & Hodge, J. W. Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement. Clin. Cancer Res. 14, 3536–3544 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lesterhuis, W. J. et al. A pilot study on the immunogenicity of dendritic cell vaccination during adjuvant oxaliplatin/capecitabine chemotherapy in colon cancer patients. Br. J. Cancer 103, 1415–1421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Narita, M. et al. WT1 peptide vaccination in combination with imatinib therapy for a patient with CML in the chronic phase. Int. J. Med. Sci. 7, 72–81 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gonzalez-Aparicio, M. et al. Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice. Gut 60, 341–349 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Zappasodi, R. et al. Improved clinical outcome in indolent B-cell lymphoma patients vaccinated with autologous tumor cells experiencing immunogenic death. Cancer Res. 70, 9062–9072 (2010). This article provides proof of principle that the propensity of tumour cells to undergo immunogenic cell death in vitro can influence the therapeutic outcome of DC-based anticancer vaccines.

    Article  CAS  PubMed  Google Scholar 

  183. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Rev. Cancer 8, 299–308 (2008).

    Article  CAS  Google Scholar 

  184. Nistico, P. et al. Chemotherapy enhances vaccine-induced antitumor immunity in melanoma patients. Int. J. Cancer 124, 130–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Palermo, B. et al. Dacarbazine treatment before peptide vaccination enlarges T-cell repertoire diversity of melan-A-specific, tumor-reactive CTL in melanoma patients. Cancer Res. 70, 7084–7092 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Kyte, J. A. et al. Telomerase peptide vaccination combined with temozolomide: a clinical trial in stage IV melanoma patients. Clin. Cancer Res. 17, 4568–4580 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Rettig, L. et al. Gemcitabine depletes regulatory T-cells in human and mice and enhances triggering of vaccine-specific cytotoxic T-cells. Int. J. Cancer 129, 832–838 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Adams, S. et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J. Immunol. 181, 776–784 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Davis, I. D. et al. Blood dendritic cells generated with Flt3 ligand and CD40 ligand prime CD8+ T cells efficiently in cancer patients. J. Immunother. 29, 499–511 (2006).

    Article  PubMed  Google Scholar 

  190. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Muraoka, D. et al. Peptide vaccine induces enhanced tumor growth associated with apoptosis induction in CD8+ T cells. J. Immunol. 185, 3768–3776 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Bourquin, C., Schreiber, S., Beck, S., Hartmann, G. & Endres, S. Immunotherapy with dendritic cells and CpG oligonucleotides can be combined with chemotherapy without loss of efficacy in a mouse model of colon cancer. Int. J. Cancer 118, 2790–2795 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Brody, J. D. et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a Phase I/II study. J. Clin. Oncol. 28, 4324–4332 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Zoglmeier, C. et al. CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin. Cancer Res. 17, 1765–1775 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Wang, Y., Wang, X. Y., Subjeck, J. R., Shrikant, P. A. & Kim, H. L. Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines. Br. J. Cancer 104, 643–652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yang, X. F. Factors regulating apoptosis and homeostasis of CD4+CD25highFOXP3+ regulatory T cells are new therapeutic targets. Front. Biosci. 13, 1472–1499 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Rev. Immunol. 7, 41–51 (2007).

    Article  CAS  Google Scholar 

  198. Schust, J., Sperl, B., Hollis, A., Mayer, T. U. & Berg, T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol. 13, 1235–1242 (2006).

    Article  CAS  PubMed  Google Scholar 

  199. Kraman, M. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science 330, 827–830 (2010).

    Article  CAS  PubMed  Google Scholar 

  200. Shields, J. D., Kourtis, I. C., Tomei, A. A., Roberts, J. M. & Swartz, M. A. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749–752 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Schietinger, A., Philip, M., Liu, R. B., Schreiber, K. & Schreiber, H. Bystander killing of cancer requires the cooperation of CD4+ and CD8+ T cells during the effector phase. J. Exp. Med. 207, 2469–2477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zitvogel, L., Kepp, O. & Kroemer, G. Decoding cell death signals in inflammation and immunity. Cell 140, 798–804 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Kepp, O. et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev. 30, 61–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  204. Rakhra, K. et al. CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Chakraborty, M. et al. The use of chelated radionuclide (samarium-153-ethylenediaminetetramethylenephosphonate) to modulate phenotype of tumor cells and enhance T cell-mediated killing. Clin. Cancer Res. 14, 4241–4249 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lynch, T. et al. Phase II trial of ipilimumab (IPI) and paclitaxel/carboplatin (P/C) in first-line stage IIIb/IV non-small cell lung cancer (NSCLC). J. Clin. Oncol. (Meeting Abstracts) 28, 7531 (2010).

    Article  Google Scholar 

  207. Gabrilovich, D. I. Combination of chemotherapy and immunotherapy for cancer: a paradigm revisited. Lancet Oncol. 8, 2–3 (2007).

    Article  PubMed  Google Scholar 

  208. Scripture, C. D. & Figg, W. D. Drug interactions in cancer therapy. Nature Rev. Cancer 6, 546–558 (2006).

    Article  CAS  Google Scholar 

  209. Marx, J. How the glucocorticoids suppress immunity. Science 270, 232–233 (1995).

    Article  CAS  PubMed  Google Scholar 

  210. Kubecova, M., Kolostova, K., Pinterova, D., Kacprzak, G. & Bobek, V. Cimetidine: an anticancer drug? Eur. J. Pharm. Sci. 42, 439–444 (2011).

    Article  CAS  PubMed  Google Scholar 

  211. Kroemer, G. & Pouyssegur, J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  212. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Fukasawa, K. Oncogenes and tumour suppressors take on centrosomes. Nature Rev. Cancer 7, 911–924 (2007).

    Article  CAS  Google Scholar 

  214. Vakkila, J. & Lotze, M. T. Inflammation and necrosis promote tumour growth. Nature Rev. Immunol. 4, 641–648 (2004).

    Article  CAS  Google Scholar 

  215. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  216. Morselli, E. et al. Oncosuppressive functions of autophagy. Antioxid. Redox Signal. 14, 2251–2269 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nature Rev. Cancer 7, 961–967 (2007).

    Article  CAS  Google Scholar 

  218. Mueller, M. M. & Fusenig, N. E. Friends or foes — bipolar effects of the tumour stroma in cancer. Nature Rev. Cancer 4, 839–849 (2004).

    Article  CAS  Google Scholar 

  219. Green, D. R., Ferguson, T., Zitvogel, L. & Kroemer, G. Immunogenic and tolerogenic cell death. Nature Rev. Immunol. 9, 353–363 (2009).

    Article  CAS  Google Scholar 

  220. Kepp, O., Tesniere, A., Zitvogel, L. & Kroemer, G. The immunogenicity of tumor cell death. Curr. Opin. Oncol. 21, 71–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  221. Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 15 Jul 2011 (doi:10.1038/cdd.2011.96). This review contains up-to-date recommendations for the functional classification of cell death subroutines, as formulated by the Nomenclature Committee on Cell Death in 2012.

  222. Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3–11 (2009). This review contains recommendations for the morphological classification of cell death subroutines, as formulated by the Nomenclature Committee on Cell Death in 2009.

    Article  CAS  PubMed  Google Scholar 

  223. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  224. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nature Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  225. Panaretakis, T. et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 28, 578–590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Martins, I. et al. Chemotherapy induces ATP release from tumor cells. Cell Cycle 8, 3723–3728 (2009).

    Article  CAS  PubMed  Google Scholar 

  227. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents. Science (in the press).

  228. Chekeni, F. B. et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang, J. et al. VEGF blockade inhibits lymphocyte recruitment and ameliorates immune-mediated vascular remodeling. Circ. Res. 107, 408–417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the Ligue contre le Cancer (the French National League against Cancer), the AXA Chair for Longevity Research, Cancéropôle Ile-de-France, Institut National du Cancer (the French National Cancer Institute), the Bettencourt-Schueller Foundation, The Fondation de France, the Fondation pour la Recherche Médicale (the Foundation for Medical Research), the Agence National de la Recherche (the National Agency for Research) and the European Commission (APO-SYS, ArtForce, ChemoRes. Death-Train) as well as the LabEx Immuno-Oncology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Kroemer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Guido Kroemer's homepage

Glossary

Proto-oncogenes

Genes that contribute to tumorigenesis via a gain-of-function mutation or overexpression.

Oncosuppressor genes

Genes that normally interfere with tumorigenesis. Deletion or loss-of-function mutations in these genes are permissive for the development of cancer.

Genome stability genes

Genes that control cell cycle progression or DNA repair mechanisms, thereby supervising the maintenance of genome stability.

Therapeutic monoclonal antibodies

A novel class of highly specific therapeutic agents that are used in various medical fields and often function by activating immune effector mechanisms.

Personalized medicine

A medical approach whereby therapies are tailored to each patient's pathological and genetic features to minimize side effects and improve efficacy.

Merkel cell carcinoma

A considerably rare human skin cancer of viral origin. Notably, the incidence of this cancer is particularly high, and the course of disease particularly aggressive, in immunocompromised individuals.

FOXP3

Forkhead box P3. A transcription factor from the FOX protein family that underlies the capacity of regulatory T cells to negatively regulate immune responses and favour self-tolerance (including in cancer).

T helper type 2 (TH2) response

The production — by CD4+ T helper lymphocytes — of cytokines including interleukin-4 (IL-4), IL-5 and IL-13 (which promote atopy), as well as IL-10 (which exerts immunosuppressive functions).

Activating NK receptor p30

(NKp30). Natural killer cell activating receptor encoded by the natural cytotoxicity triggering receptor 3 (NCR3) gene. The main endogenous ligand of NKp30 is the B7 homolog B7H6, which is selectively expressed on several distinct cancer cell types.

Metronomic chemotherapy

The chronic administration (at regular intervals) of chemotherapy at low, minimally toxic doses, with no prolonged drug-free periods.

Myeloid-derived suppressor cells

(MDSCs). A heterogeneous population of cells that are defined by their myeloid origin, immature state and their ability to potently suppress T cell responses.

Signal transducer and activator of transcription

(STAT). The mammalian genome encodes at least seven distinct members of the STAT family of transcription factors, which regulate multiple aspects of cell growth, survival and differentiation.

T helper type 1 (TH1) antitumour response

The production — by CD4+ T helper lymphocytes — of cytokines, mainly interferon-γ and lymphotoxin-α, which exert immunostimulatory functions.

OX40

A cell surface glycoprotein of the tumour necrosis factor receptor superfamily that, upon binding to its ligand (OX40L, which is expressed on activated antigen-presenting cells), delivers a co-stimulatory signal that is essential for the long-term survival of CD4+ T cells.

γδ T cells

A small subset of T cells that possess an invariant T cell receptor on their surface and operate at the boundary between innate and adaptive immunity.

4T1-Neu

Murine breast cancer cells (syngenic to BALB/c mice) that are transduced to express the rat Neu gene (the rat orthologue of human HER2; also known as ERBB2).

SNARE

Soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein (SNAP) receptor.

CD20+CD5+sIgM+ B lymphocytes

B lymphocytes expressing at their surface CD5, CD20 and immunoglobulin M (IgM) molecules.

Indoleamine 2,3-dioxygenase

An enzyme that catalyses the degradation of the essential amino acid L-tryptophan to N-formylkynurenine, which is an immunosuppressive metabolite.

Phosphoinositide 3-kinases

(PI3Ks). A family of kinases that encompasses three distinct classes of lipid kinases that can be discriminated based on primary structure, substrate specificity and regulation. PI3Ks regulate an extraordinarily diverse group of cellular functions.

BH3 mimetic

A small, plasma membrane-permeant chemical that is structurally similar to the BCL-2 homology 3 (BH3) domain of pro-apoptotic BCL-2 family members.

Antibody-dependent cellular cytotoxicity

The process whereby an effector cell of the innate immune system (for example, a natural killer cell) kills a target cell that has been bound by specific antibodies.

Antibody-dependent cellular phagocytosis

The process whereby a phagocytic cell of the innate immune system (for example, a macrophage) takes up and degrades a target cell that has been bound by specific antibodies.

Complement-dependent cytotoxicity

The activation of the complement cascade against a target cell that has been bound by specific antibodies, leading to the formation of a membrane attack complex and cell lysis.

CD40

A co-stimulatory molecule (the receptor for the CD40 ligand; also known as CD154) that is expressed by antigen-presenting cells and required for their activation.

Inhibitor of apoptosis proteins

A family of functionally and structurally related proteins that inhibit caspase activation but also exert E3 ubiquitin ligase activity following death receptor ligation.

Histone deacetylase inhibitors

A class of compounds that interfere with the function of histone deacetylases, thereby affecting the epigenetic regulation of transcription.

Exosome-based vaccines

Anticancer vaccines that are based on 30–90 nm vesicles originating from late endosomes. These vesicles are secreted by professional antigen-presenting cells and, because of their composition, they exert profound immunostimulatory functions.

Wilms' tumour 1

A transcription factor encoded by the Wilms' tumour 1 (WT1) gene that has an essential role in the normal development of the urogenital system.

NY-ESO-1

A highly immunogenic cancer–testis antigen that is widely used in clinical cancer vaccine trials.

Fibroblast activation protein-α

A transmembrane serine protease that is induced on reactive stromal fibroblasts in epithelial cancers, sarcomas and granulation tissue, and may be involved in tumour invasion, tissue remodelling and wound repair.

Oncogene addiction

The phenomenon whereby cancer cells depend on the continuous hyperactivation of one or more oncogenes for their survival.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galluzzi, L., Senovilla, L., Zitvogel, L. et al. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11, 215–233 (2012). https://doi.org/10.1038/nrd3626

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3626

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer