Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Image processing for electron microscopy single-particle analysis using XMIPP

Abstract

We describe a collection of standardized image processing protocols for electron microscopy single-particle analysis using the XMIPP software package. These protocols allow performing the entire processing workflow starting from digitized micrographs up to the final refinement and evaluation of 3D models. A particular emphasis has been placed on the treatment of structurally heterogeneous data through maximum-likelihood refinements and self-organizing maps as well as the generation of initial 3D models for such data sets through random conical tilt reconstruction methods. All protocols presented have been implemented as stand-alone, executable python scripts, for which a dedicated graphical user interface has been developed. Thereby, they may provide novice users with a convenient tool to quickly obtain useful results with minimum efforts in learning about the details of this comprehensive package. Examples of applications are presented for a negative stain random conical tilt data set on the hexameric helicase G40P and for a structurally heterogeneous data set on 70S Escherichia coli ribosomes embedded in vitrified ice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A generalized XMIPP processing workflow.
Figure 2: Micrograph selection.
Figure 3: Example of class selection from a self-organizing map of rotational spectra.
Figure 4: Anticipated results for the G40P case.
Figure 5: Anticipated results for the ribosome case.

Similar content being viewed by others

References

  1. Henderson, R. Realizing the potential of electron cryo-microscopy. Q. Rev. Biophys. 37, 3–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Subramaniam, S. & Milne, J.L.S. Three-dimensional electron microscopy at molecular resolution. Annu. Rev. Biophys. Biomol. Struct. 33, 141–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Carragher, B . & Smith, P.R. Special issue on Advances in Computational Image Processing for Microscopy. J. Struct. Biol. 116, 2–8 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Chiu, S.L.A.W. Special Issue on Single Particle Processing (eds. Ludtke, S.J. & Chiu, W.) J. Struct. Biol. 173 (2001).

  5. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Heymann, J.B. & Belnap, D.M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Hohn, M. et al. SPARX, a new environment for Cryo-EM image processing. J. Struct. Biol. 157, 47–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Sorzano, C.O.S. et al. XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148, 194–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Software tools for molecular microscopy. http://en.wikipedia.org/wiki/Software_tools_for_molecular_microscopy (Wikipedia, 2007).

  12. Marabini, R. et al. Xmipp: an image processing package for electron microscopy. J. Struct. Biol. 116, 237–240 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Nickell, S. et al. Automated cryoelectron microscopy of 'single particles' applied to the 26S proteasome. FEBS Lett. 581, 2751–2756 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Martin-Benito, J. et al. Divergent substrate-binding mechanisms reveal an evolutionary specialization of eukaryotic prefoldin compared to its archaeal counterpart. Structure 15, 101–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Busselez, J. et al. Structural basis for the PufX-mediated dimerization of bacterial photosynthetic core complexes. Structure 15, 1674–1683 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Tato, I. et al. The ATPase activity of the DNA transporter TrwB is modulated by protein TrwA: implications for a common assembly mechanism of DNA translocating motors. J. Biol. Chem. 282, 25569–25576 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Agirrezabala, X. et al. Quasi-atomic model of bacteriophage t7 procapsid shell: insights into the structure and evolution of a basic fold. Structure 15, 461–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Nunez-Ramirez, R. et al. Loading a ring: structure of the Bacillus subtilis DnaB protein, a co-loader of the replicative helicase. J. Mol. Biol. 367, 764–769 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Rivera-Calzada, A., Spagnolo, L., Pearl, L.H. & Llorca, O. Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep. 8, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Arias-Palomo, E., Recuero-Checa, M.A., Bustelo, X.R. & Llorca, O. 3D structure of Syk kinase determined by single-particle electron microscopy. Biochim. Biophys. Acta 1774, 1493–1499 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Heel, M. Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21, 111–123 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Crowther, R.A. & Amos, L.A. Harmonic analysis of electron microscope images with rotational symmetry. J. Mol. Biol. 60, 123–130 (1971).

    Article  CAS  PubMed  Google Scholar 

  23. Pascual-Montano, A. et al. A novel neural network technique for analysis and classification of EM single-particle images. J. Struct. Biol. 133, 233–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Scheres, S.H.W. et al. Maximum-likelihood multi-reference refinement for electron microscopy images. J. Mol. Biol. 348, 139–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Scheres, S.H.W. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4, 27–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Scheres, S.H.W. et al. Modeling experimental image formation for likelihood-based classification of electron microscopy data. Structure 15, 1167–1177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng, R.H. et al. Functional implications of quasi-equivalence in a T = 3 icosahedral animal virus established by cryo-electron microscopy and X-ray crystallography. Structure 2, 271–282 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Penczek, P.A., Grassucci, R.A. & Frank, J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53, 251–270 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Sorzano, C.O.S. et al. A multiresolution approach to orientation assignment in 3D electron microscopy of single particles. J. Struct. Biol. 146, 381–392 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Jonic, S. et al. Spline-based image-to-volume registration for three-dimensional electron microscopy. Ultramicroscopy 103, 303–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Sorzano, C.O.S., Marabini, R., Herman, G.T., Censor, Y. & Carazo, J.M. Transfer function restoration in 3D electron microscopy via iterative data refinement. Phys. Med. Biol. 49, 509–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Marabini, R., Herman, G.T. & Carazo, J.M. 3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs). Ultramicroscopy 72, 53–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Sorzano, C.O.S. et al. The effect of overabundant projection directions on 3D reconstruction algorithms. J. Struct. Biol. 133, 108–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Jonic, S., Sorzano, C.O.S., Cottevieille, M., Larquet, E. & Boisset, N. A novel method for improvement of visualization of power spectra for sorting cryo-electron micrographs and their local areas. J. Struct. Biol. 157, 156–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, Y. et al. Automatic particle selection: results of a comparative study. J. Struct. Biol. 145, 3–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Pascual, A., Barcena, M., Merelo, J.J. & Carazo, J.M. Mapping and fuzzy classification of macromolecular images using self-organizing neural networks. Ultramicroscopy 84, 85–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Pascual-Montano, A., Taylor, K.A., Winkler, H., Pascual-Marqui, R.D. & Carazo, J.M. Quantitative self-organizing maps for clustering electron tomograms. J. Struct. Biol. 138, 114–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Scheres, S.H.W., Valle, M. & Carazo, J.M. Fast maximum-likelihood refinement of electron microscopy images. Bioinformatics 21 Suppl 2: ii243–ii244 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Sorzano, C.O.S., Marabini, R., Herman, G.T. & Carazo, J.M. Multiobjective algorithm parameter optimization using multivariate statistics in three-dimensional electron microscopy reconstruction. Pattern Recognit. 38, 2587–2601 (2005).

    Article  Google Scholar 

  41. Van Heel, M. Similarity measures between images. Ultramicroscopy 21, 95–99 (1987).

    Article  Google Scholar 

  42. Unser, M., Aldroubi, A. & Eden, M. The L(2) polynomial spline pyramid. IEEE Trans. Pattern Anal. Mach. Intell. 15, 364–379 (1993).

    Article  Google Scholar 

  43. Unser, M. et al. Spectral signal-to-noise ratio and resolution assessment of 3D reconstructions. J. Struct. Biol. 149, 243–255 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Nunez-Ramirez, R. et al. Quaternary polymorphism of replicative helicase G40P: structural mapping and domain rearrangement. J. Mol. Biol. 357, 1063–1076 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Haixiao Gao and Joachim Frank for providing the ribosome data, and we thank the Barcelona Supercomputing Center (Centro Nacional de Supercomputación) for providing computer resources. This work was funded by the European Union (FP6-502828 and UE-512092), the US National Institutes of Health (HL740472), the Spanish Comisión Interministerial de Ciencia y Tecnología (BFU2004-00217), the Spanish Ministerio de Educacioón y Ciencias (CSD2006-0023, BIO2007-67150-C03-01 and -03), the Spanish Fondo de Investigación Sanitaria (04/0683) and the Comunidad de Madrid (S-GEN-0166-2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sjors H W Scheres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheres, S., Núñez-Ramírez, R., Sorzano, C. et al. Image processing for electron microscopy single-particle analysis using XMIPP. Nat Protoc 3, 977–990 (2008). https://doi.org/10.1038/nprot.2008.62

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.62

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing