Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Test of relativistic time dilation with fast optical atomic clocks at different velocities

Abstract

Time dilation is one of the most fascinating aspects of special relativity as it abolishes the notion of absolute time. It was first observed experimentally by Ives and Stilwell in 1938 using the Doppler effect. Here we report on a method, based on fast optical atomic clocks with large, but different Lorentz boosts, that tests relativistic time dilation with unprecedented precision. The approach combines ion storage and cooling with optical frequency counting using a frequency comb. 7Li+ ions are prepared at 6.4% and 3.0% of the speed of light in a storage ring, and their time is read with an accuracy of 2×10−10 using laser saturation spectroscopy. The comparison of the Doppler shifts yields a time dilation measurement represented by a Mansouri–Sexl parameter , consistent with special relativity. This constrains the existence of a preferred cosmological reference frame and CPT- and Lorentz-violating ‘new’ physics beyond the standard model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the TSR.
Figure 2: Results from the saturation spectroscopy.

Similar content being viewed by others

References

  1. Einstein, A. Zur Elektrodynamik bewegter Körper. Ann. Phys. 322, 891–921 (1905).

    Article  Google Scholar 

  2. Ashby, N. Relativity in the global positioning system. Living Rev. Relativity 6, 1 (2003).

    Article  ADS  Google Scholar 

  3. Reichenbach, H. Relativitätstheorie und Erkenntnis apriori (Julius Springer, Berlin, 1920).

    Book  Google Scholar 

  4. Pauli, W. On the conservation of the lepton charge. Il Nuovo Cimento 6, 204–215 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  5. Greenberg, O. W. CPT violation implies violation of Lorentz invariance. Phys. Rev. Lett. 89, 231602 (2002).

    Article  ADS  Google Scholar 

  6. Kostelecký, V. A. & Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 39, 683–685 (1989).

    Article  ADS  Google Scholar 

  7. Amelino-Camelia, G., Ellis, J., Mavromatos, N. E., Nanopoulos, D. V. & Sarkar, S. Tests of quantum gravity from observations of gamma-ray bursts. Nature 393, 763–765 (1998).

    Article  ADS  Google Scholar 

  8. Gambini, R. & Pullin, J. Nonstandard optics from quantum space-time. Phys. Rev. D 59, 124021 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. Einstein, A. Über die Möglichkeit einer neuen Prüfung des Relativitätsprinzips. Ann. Phys. 328, 197–198 (1907).

    Article  Google Scholar 

  10. Ives, H. E. & Stilwell, G. R. An experimental study of the rate of a moving atomic clock. J. Opt. Soc. Am. 28, 215–226 (1938).

    Article  ADS  Google Scholar 

  11. Lämmerzahl, C. Special relativity and Lorentz invariance. Ann. Phys. 14, 71–102 (2005).

    Article  MathSciNet  Google Scholar 

  12. Mattingly, D. Modern tests of Lorentz invariance. Living Rev. Relativity 8, 5 (2005).

    Article  ADS  Google Scholar 

  13. Robertson, H. P. Postulate versus observation in the special theory of relativity. Rev. Mod. Phys. 21, 378–382 (1949).

    Article  ADS  MathSciNet  Google Scholar 

  14. Mansouri, R. & Sexl, R. U. A test theory of special relativity: III. Second-order tests. Gen. Rel. Grav. 8, 809–814 (1977).

    Article  ADS  Google Scholar 

  15. Stanwix, P. L., Tobar, M. E., Wolf, P., Locke, C. R. & Ivanov, E. N. Improved test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire oscillators. Phys. Rev. D 74, 081101 (2006).

    Article  ADS  Google Scholar 

  16. Wolf, P. et al. Whispering gallery resonators and tests of Lorentz invariance. Gen. Rel. Grav. 36, 2351–2372 (2004).

    Article  ADS  Google Scholar 

  17. Will, C. M. Clock synchronization and isotropy of the one-way speed of light. Phys. Rev. D 45, 403–411 (1992).

    Article  ADS  Google Scholar 

  18. Kretzschmar, M. Doppler spectroscopy on relativistic particle beams in the light of a test theory of special relativity. Z. Phys. A 342, 463–469 (1992).

    Article  ADS  Google Scholar 

  19. Amelino-Camelia, G. Special treatment. Nature 418, 34–35 (2002).

    Article  ADS  Google Scholar 

  20. Snyder, J. J. & Hall, J. L. in Lecture Notes in Physics Vol. 43 (ed. Haroche, S. et al.) (Springer, New York, 1975).

    Google Scholar 

  21. McGowan, R. W., Giltner, D. M., Sternberg, S. J. & Lee, S. A. New measurement of the relativistic Doppler shift in neon. Phys. Rev. Lett. 70, 251–254 (1993).

    Article  ADS  Google Scholar 

  22. Gwinner, G. Experimental tests of time dilation in special relativity. Mod. Phys. Lett. A 20, 791–805 (2005).

    Article  ADS  Google Scholar 

  23. Riis, E. et al. Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment. Phys. Rev. A 49, 207–220 (1994).

    Article  ADS  Google Scholar 

  24. Saathoff, G. et al. Improved test of time dilation in special relativity. Phys. Rev. Lett. 91, 190403 (2003).

    Article  ADS  Google Scholar 

  25. Rong, H., Grafström, S., Kowalski, J., Neumann, R. & zu Putlitz, G. A new precise value of the absolute 2 3S1,F=5/2−2 3P2,F=7/2 transition frequency in 7Li+. Eur. Phys. J. D 3, 217–222 (1998).

    ADS  Google Scholar 

  26. Udem, Th., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  27. Reinhardt, S. et al. Iodine hyperfine structure and absolute frequency measurements at 565, 576, and 585 nm. Opt. Commun. 261, 282–290 (2006).

    Article  ADS  Google Scholar 

  28. Artoni, M., Carusotto, I. & Minardi, F. Light-force-induced fluorescence line-center shifts in high-precision optical spectroscopy: Simple model and experiment. Phys. Rev. A 62, 023402 (2000).

    Article  ADS  Google Scholar 

  29. Riis, E. et al. Test of the isotropy of the speed of light using fast-beam laser spectroscopy. Phys. Rev. Lett. 60, 81–84 (1988).

    Article  ADS  Google Scholar 

  30. Wolf, P. & Petit, G. Satellite test of special relativity using the global positioning system. Phys. Rev. A 56, 4405–4409 (1997).

    Article  ADS  Google Scholar 

  31. Hohensee, M., Glenday, A., Li, C.-H., Tobar, M. E. & Wolf, P. Erratum: New methods of testing Lorentz violation in electrodynamics. Phys. Rev. D 75, 049902 (2007).

    Article  ADS  Google Scholar 

  32. Lane, C. D. Probing Lorentz violation with Doppler-shift experiments. Phys. Rev. D 72, 016005 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Technical support from M. Grieser, K. Horn and H. Krieger is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Gwinner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhardt, S., Saathoff, G., Buhr, H. et al. Test of relativistic time dilation with fast optical atomic clocks at different velocities. Nature Phys 3, 861–864 (2007). https://doi.org/10.1038/nphys778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing