Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Artificial honeycomb lattices for electrons, atoms and photons

Abstract

Artificial honeycomb lattices offer a tunable platform for studying massless Dirac quasiparticles and their topological and correlated phases. Here we review recent progress in the design and fabrication of such synthetic structures focusing on nanopatterning of two-dimensional electron gases in semiconductors, molecule-by-molecule assembly by scanning probe methods and optical trapping of ultracold atoms in crystals of light. We also discuss photonic crystals with Dirac cone dispersion and topologically protected edge states. We emphasize how the interplay between single-particle band-structure engineering and cooperative effects leads to spectacular manifestations in tunnelling and optical spectroscopies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Artificial graphene structures experimentally obtained by different methods.
Figure 2: Designer Dirac fermions in molecular graphene.
Figure 3: Landau levels of photons in strained photonic graphene.
Figure 4: Flexible optical lattices for cold atom gases.
Figure 5: Many-body effects in artificial honeycomb lattices.

Similar content being viewed by others

References

  1. Novoselov, K. S. & Geim, A. K. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Google Scholar 

  3. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  4. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  CAS  Google Scholar 

  5. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    Article  CAS  Google Scholar 

  6. Katsnelson, M. I. Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  7. Goerbig, M. O., Fuchs, J.-N., Montambaux, G. & Piéchon, F. Tilted anisotropic Dirac cones in quinoid-type graphene and α-(BEDT-TTF)2I3 . Phys. Rev. B 78, 045415 (2008).

    Article  CAS  Google Scholar 

  8. Asano, K. & Hotta, C. Designing Dirac points in two-dimensional lattices. Phys. Rev. B 83, 245125 (2011).

    Article  CAS  Google Scholar 

  9. Lim, L. K., Fuchs, J.-N. & Montambaux, G. Bloch-Zener oscillations across a merging transition of Dirac points. Phys. Rev. Lett. 108, 175303 (2012).

    Article  CAS  Google Scholar 

  10. Park, C. H. & Louie, S. G. Making massless Dirac fermions from a patterned two-dimensional electron gas. Nano Lett. 9, 1793–1797 (2009). This article presents the first theoretical analysis and prescription by means of nearly free electron perturbation theory for realizing massless Dirac fermions in patterned semiconductors.

    Article  CAS  Google Scholar 

  11. Gibertini, M. et al. Engineering artificial graphene in a two-dimensional electron gas. Phys. Rev. B 79, 241406(R) (2009). This article presents the first theoretical analysis based on plane-wave methods of the formation of Dirac bands in a patterned semiconductor. Photoluminescence data demonstrating the impact of the honeycomb lattice on the electron gas were also reported.

    Article  CAS  Google Scholar 

  12. De Simoni, G. et al. Delocalized–localized transition in a semiconductor two-dimensional honeycomb lattice. Appl. Phys. Lett. 97, 132113 (2010).

    Article  CAS  Google Scholar 

  13. Singha, A. et al. Two-dimensional Mott–Hubbard electrons in an artificial honeycomb lattice. Science 332, 1176–1179 (2011). This article presents combined theoretical and experimental work on the formation of Hubbard split bands in a 2DEG subject to a honeycomb periodic potential and a perpendicular magnetic field.

    Article  CAS  Google Scholar 

  14. Nadvornik, L. et al. From laterally modulated two-dimensional electron gas towards artificial graphene. New J. Phys. 14, 053002 (2012).

    Article  CAS  Google Scholar 

  15. Goswami, S. et al. Transport through an electrostatically defined quantum dot lattice in a two-dimensional electron gas. Phys. Rev. B 85, 075427 (2012).

    Article  CAS  Google Scholar 

  16. Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012). This article reports the first observation of massless and massive Dirac fermions, their tunable electric and magnetic gauge fields, and the Kekulé distortion in an artificial condensed-matter system.

    Article  CAS  Google Scholar 

  17. Wunsch, B., Guinea, F. & Sols, F. Dirac-point engineering and topological phase transitions in honeycomb optical lattices. New J. Phys. 10, 103027 (2008).

    Article  CAS  Google Scholar 

  18. Soltan-Panahi, P. et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Phys. 7, 434–440 (2011). This article represents the first realization of a hexagonal optical lattice for cold atoms; although it deals with bosons, it already shows specific consequences of hexagonal geometry.

    Article  CAS  Google Scholar 

  19. Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G. & Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302–305 (2012). This article presents the first realization of a hexagonal-like lattice and Dirac points for fermions in ultracold atomic lattices.

    Article  CAS  Google Scholar 

  20. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  CAS  Google Scholar 

  21. Sepkhanov, R. A., Bazaliy, Ya. B. & Beenakker, C. W. J. Extremal transmission at the Dirac point of a photonic band structure. Phys. Rev. A 75, 063813 (2007).

    Article  CAS  Google Scholar 

  22. Sepkhanov, R. A., Nilsson, J. & Beenakker, C. W. J. Proposed method for detection of the pseudospin-1/2 Berry phase in a photonic crystal with a Dirac spectrum. Phys. Rev. B 78, 045122 (2008).

    Article  CAS  Google Scholar 

  23. Peleg, O. et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007).

    Article  CAS  Google Scholar 

  24. Esaki, L. & Tsu, R. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61–65 (1970).

    Article  CAS  Google Scholar 

  25. Bernstein, G. & Ferry D. K. Negative differential conductivity in lateral surface superlattices. J. Vac. Sci. Technol. B 5, 964–966 (1987).

    Article  CAS  Google Scholar 

  26. Weiss, D., von Klitzing, K., Ploog, K. & Weimann, G. Magnetoresistance oscillations in a two-dimensional electron gas induced by a submicrometer periodic potential. Europhys. Lett. 8, 179–184 (1989).

    Article  CAS  Google Scholar 

  27. Albrecht, C. et al. Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance. Phys. Rev. Lett. 86, 147–150 (2001).

    Article  CAS  Google Scholar 

  28. Melinte, S. et al. Laterally modulated 2D electron system in the extreme quantum limit. Phys. Rev. Lett. 92, 036802 (2004).

    Article  CAS  Google Scholar 

  29. Dean, C. R. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article  CAS  Google Scholar 

  30. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    Article  CAS  Google Scholar 

  31. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  CAS  Google Scholar 

  32. Evers, W. H. et al. Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. Nano Lett. 13, 2317–2323 (2013).

    Article  CAS  Google Scholar 

  33. Ghaemi, P., Gopalakrishnan, S. & Hughes, T. L. Designer quantum spin Hall phase transition in molecular graphene. Phys. Rev. B 86, 201406(R) (2012).

    Article  CAS  Google Scholar 

  34. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  Google Scholar 

  35. Mañes, J. L. Symmetry-based approach to electron–phonon interactions in graphene. Phys. Rev. B 76, 045430 (2007).

    Article  CAS  Google Scholar 

  36. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Phys. 6, 30–33 (2010). This article presents the first theoretical framework for realizing high perpendicular pseudomagnetic fields in graphene by means of strain.

    Article  CAS  Google Scholar 

  37. Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329, 544–547 (2010).

    Article  CAS  Google Scholar 

  38. Jackiw, R. Fractional charge from topology in polyacetylene and graphene. AIP Conf. Proc. 939, 341–350 (2007).

    Article  CAS  Google Scholar 

  39. Hou, C.-Y., Chamon, C. & Mudry, C. Electron fractionalization in two-dimensional graphene-like structures. Phys. Rev. Lett. 98, 186809 (2007). This article is the first theoretical prediction of fractional charge in two dimensions using the Kekulé order parameter.

    Article  CAS  Google Scholar 

  40. Roy, B. & Herbut, I. F. Unconventional superconductivity on honeycomb lattice: theory of Kekulé order parameter. Phys. Rev. B 82, 035429 (2010).

    Article  CAS  Google Scholar 

  41. Zhang, Y. & Zhang, C. Quantized anomalous Hall insulator in a nanopatterned two-dimensional electron gas. Phys. Rev. B 84, 085123 (2011).

    Article  CAS  Google Scholar 

  42. Sushkov, O. P. & Castro Neto, A. H. Topological insulating states in ordinary semiconductors. Phys. Rev. Lett. 110, 186601 (2013).

    Article  CAS  Google Scholar 

  43. Parimi, P. V. et al. Negative refraction and left-handed electromagnetism in microwave photonic crystals. Phys. Rev. Lett. 92, 127401 (2004).

    Article  CAS  Google Scholar 

  44. Bittner, S. et al. Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene. Phys. Rev. B 82, 014301 (2010).

    Article  CAS  Google Scholar 

  45. Andrei, E. Y., Li, G. & Du, X. Electronic properties of graphene: a perspective from scanning tunneling microscopy and magneto-transport. Rep. Prog. Phys. 75, 056501 (2012).

    Article  CAS  Google Scholar 

  46. Bittner, S., Dietz, B., Miski-Oglu, M. & Richter, A. Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard. Phys. Rev. B 85, 064301 (2012).

    Article  CAS  Google Scholar 

  47. Bellec, M., Kuhl, U., Montambaux, G. & Mortessagne, F. Topological transition of Dirac points in a microwave experiment. Phys. Rev. Lett. 110, 033902 (2013).

    Article  CAS  Google Scholar 

  48. Szameit, A., Rechtsman, M. C., Bahat-Treidel, O. & Segev, M. PT-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806(R) (2011).

    Article  CAS  Google Scholar 

  49. Bahat-Treidel, O. et al. Klein tunneling in deformed honeycomb lattices. Phys. Rev. Lett. 104, 063901 (2010).

    Article  CAS  Google Scholar 

  50. Rechtsman, M. C. et al. Observation of novel edge states in photonic graphene. Preprint at http://arXiv.org/abs/1210.5361 (2012).

  51. Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nature Photon. 7, 153–158 (2013). This article reports the first observation of photonic Landau levels using an artificial dielectric structure.

    Article  CAS  Google Scholar 

  52. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013). This article reports the first observation of a photonic Floquet topological insulator, where the propagation direction of light in an artificial system substitutes for the time variable.

    Article  CAS  Google Scholar 

  53. Khanikaev, A. B. et al. Photonic analogue of two-dimensional topological insulators and helical one-way edge transport in bi-anisotropic metamaterials. Nature Mater. 12, 233–239 (2013).

    Article  CAS  Google Scholar 

  54. Lewenstein, M., Sanpera, A. & Ahufinger, V. Ultracold Atoms in Optical Lattices: Simulating Many-Body Quantum Systems (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  55. Goldman, N. et al. Realistic time-reversal invariant topological insulators with neutral atoms. Phys. Rev. Lett. 105, 255302 (2010).

    Article  CAS  Google Scholar 

  56. Bermudez, A., Goldman, N., Kubasiak, A., Lewenstein, M. & Martin-Delgado, M. A. Topological phase transitions in the non-Abelian honeycomb lattice. New J. Phys. 12, 033041 (2010).

    Article  CAS  Google Scholar 

  57. Hauke, P. et al. Non-Abelian gauge fields and topological insulators in shaken optical lattices. Phys. Rev. Lett. 109, 145301 (2012).

    Article  CAS  Google Scholar 

  58. De Juan, F. Non-Abelian gauge fields and quadratic band touching in molecular graphene. Phys. Rev. B 87, 125419 (2013).

    Article  CAS  Google Scholar 

  59. Uehlinger, T. et al. Double transfer through Dirac points in a tunable honeycomb optical lattice. Eur. Phys. J. Special Topics 217, 121–133 (2013).

    Article  Google Scholar 

  60. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012).

    Article  CAS  Google Scholar 

  61. Gerritsma, R. et al. Quantum simulation of the Dirac equation. Nature 463, 68–71 (2010).

    Article  CAS  Google Scholar 

  62. Gerritsma, R. et al. Quantum simulation of the Klein paradox with trapped ions. Phys. Rev. Lett. 106, 060503 (2011).

    Article  CAS  Google Scholar 

  63. Britton, J. W. et al. Engineered two-dimensional Ising interactions on a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).

    Article  CAS  Google Scholar 

  64. Duine, R. A. & Stoof, H. T. C. Atom–molecule coherence in Bose gases. Phys. Rep. 396, 115–195 (2004).

    Article  CAS  Google Scholar 

  65. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  Google Scholar 

  66. Hubbard, J. Electron correlations in narrow energy bands. III. An improved solution. Proc. R. Soc. Lond. A 281, 401–419 (1964).

    Article  Google Scholar 

  67. Kotliar, G. & Vollhardt, D. Strongly correlated materials: insights from dynamical mean-field theory. Phys. Today 57, 53–59 (March, 2004).

    Article  CAS  Google Scholar 

  68. Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).

    Article  CAS  Google Scholar 

  69. Vollhardt, D. Dynamical mean-field theory of electronic correlations in models and materials. AIP Conf. Proc. 1297, 339–403 (2010).

    Article  CAS  Google Scholar 

  70. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article  CAS  Google Scholar 

  71. Fazio, R. & van der Zant, H. Quantum phase transitions and vortex dynamics in superconducting networks. Phys. Rep. 355, 235–334 (2001).

    Article  CAS  Google Scholar 

  72. Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Castro Neto, A. H. Electron-electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012).

    Article  CAS  Google Scholar 

  73. Sorella, S. & Tosatti, E. Semimetal-insulator transition of the Hubbard model in the honeycomb lattice. Europhys. Lett. 19, 699–704 (1992).

    Article  Google Scholar 

  74. Meng, Z. Y., Lang, T. C., Wessel, S., Assaad, F. F. & Muramatsu, A. Quantum spin liquid emerging in two-dimensional correlated Dirac fermions. Nature 464, 847–851 (2010).

    Article  CAS  Google Scholar 

  75. Sorella, S., Otsuka, Y. & Yunoki, S. Absence of a spin liquid phase in the Hubbard model on the honeycomb lattice. Sci. Rep. 2, 992 (2012).

    Article  CAS  Google Scholar 

  76. Herbut, I. F. Interactions and phase transitions on graphene's honeycomb lattice. Phys. Rev. Lett. 97, 146401 (2006).

    Article  CAS  Google Scholar 

  77. Herbut, I. F., Juričić, V. & Roy, B. Theory of interacting electrons on the honeycomb lattice. Phys. Rev. B 79, 085116 (2009).

    Article  CAS  Google Scholar 

  78. Raghu, S., Qi, X.-L., Honerkamp, C. & Zhang, S.-C. Topological Mott insulators. Phys. Rev. Lett. 100, 156401 (2008).

    Article  CAS  Google Scholar 

  79. Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity from repulsive interactions in doped graphene. Nature Phys. 8, 158–163 (2012).

    Article  CAS  Google Scholar 

  80. Guinea, F. & Uchoa, B. Odd-momentum pairing and superconductivity in vertical graphene heterostructures. Phys. Rev. B 86, 134521 (2012).

    Article  CAS  Google Scholar 

  81. Roldán, R., Cappelluti, E. & Guinea, F. Interactions and superconductivity in heavily doped MoS2 . Preprint at http://arXiv.org/abs/1301.4836 (2013).

  82. Hansen, D., Perepelitsky, E. & Sriram Shastry, B. Split Hubbard bands at low densities. Phys. Rev. B 83, 205134 (2011).

    Article  CAS  Google Scholar 

  83. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  CAS  Google Scholar 

  84. Alicea, J. & Fisher, M. P. A. Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes. Phys. Rev. B 74, 075422 (2006).

    Article  CAS  Google Scholar 

  85. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  CAS  Google Scholar 

  86. Soltan-Panahi, P., Lühmann, D.-S., Struck, J., Windpassinger, P. & Sengstock, K. Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices. Nature Phys. 8, 71–74 (2011).

    Article  CAS  Google Scholar 

  87. Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996–999 (2011).

    Article  CAS  Google Scholar 

  88. Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L. & Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 340, 1307–1310 (2013).

    Article  CAS  Google Scholar 

  89. Jo, G.-B. et al. Ultracold atoms in a tunable optical kagome lattice. Phys. Rev. Lett. 108, 045305 (2012).

    Article  CAS  Google Scholar 

  90. Hands, S. & Strouthos, C. Quantum critical behavior in a graphenelike model. Phys. Rev. B 78, 165423 (2008).

    Article  CAS  Google Scholar 

  91. Drut, J. E. & Lähde, T. A. Lattice field theory simulations of graphene. Phys. Rev. B 79, 165425 (2009).

    Article  CAS  Google Scholar 

  92. Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nature Phys. 7, 701–704 (2011).

    Article  CAS  Google Scholar 

  93. Polini, M., Asgari, R., Barlas, Y., Pereg-Barnea, T. & MacDonald, A. H. Graphene: a pseudochiral Fermi liquid. Solid-State Commun. 143, 58–62 (2007).

    Article  CAS  Google Scholar 

  94. Barlas, Y., Pereg-Barnea, T., Polini, M., Asgari, R. & MacDonald, A. H. Chirality and correlations in graphene. Phys. Rev. Lett. 98, 236601 (2007).

    Article  CAS  Google Scholar 

  95. Räsänen, E., Rozzi, C. A., Pittalis, S. & Vignale, G. Electron-electron interactions in artificial graphene. Phys. Rev. Lett. 108, 246803 (2012).

    Article  CAS  Google Scholar 

  96. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    Article  CAS  Google Scholar 

  97. Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).

    Article  CAS  Google Scholar 

  98. Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292–299 (2012).

    Article  CAS  Google Scholar 

  99. Weick, G., Woollacott, C., Barnes, W. L., Hess, O. & Mariani, E. Dirac-like plasmons in honeycomb lattices of metallic nanoparticles. Phys. Rev. Lett. 110, 106801 (2013).

    Article  CAS  Google Scholar 

  100. Deissler, B. et al. Delocalization of a disordered bosonic system by repulsive interactions. Nature Phys. 6, 354–358 (2010).

    Article  CAS  Google Scholar 

  101. Simon, J. & Greiner, M. A duo of graphene mimics. Nature 483, 282–284 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Fazio, M.I. Katsnelson, A. Pinczuk and G. Vignale for very useful discussions. We acknowledge financial support by the Spanish Ministry of Economy (MINECO) through grant no. FIS2011-23713 (F.G.), the European Research Council Advanced Grants 'NOV-GRAPHENE' (F.G.) and 'QUAGATUA' (M.L.), the Spanish Ministry of Science and Innovation (MINCIN) through the grant 'TOQATA' (M.L.), the EU Integrated Project 'AQUTE' (M.L.), the US National Science Foundation through grant DMR-1206916 (H.C.M.), the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515 (H.C.M.), and the Italian Ministry of Education, University, and Research (MIUR) through the programmes 'FIRB - Futuro in Ricerca 2010', grant no. RBFR10M5BT (M.P. and V.P.), and 'FIRB - Futuro in Ricerca 2012', grant no. RBFR12NLNA (V.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Polini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polini, M., Guinea, F., Lewenstein, M. et al. Artificial honeycomb lattices for electrons, atoms and photons. Nature Nanotech 8, 625–633 (2013). https://doi.org/10.1038/nnano.2013.161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing