Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone

Abstract

We sought to address the fundamental question of how stem cell microenvironments can regulate self-renewal. We found that Notch was active in astroglia-like neural stem cells (NSCs), but not in transit-amplifying progenitors of the murine subependymal zone, and that the level of Notch transcriptional activity correlated with self-renewal and multipotency. Moreover, dividing NSCs appeared to balance renewal with commitment via controlled segregation of Notch activity, leading to biased expression of known (Hes1) and previously unknown (Egfr) Notch target genes in daughter cells. Pigment epithelium–derived factor (PEDF) enhanced Notch-dependent transcription in cells with low Notch signaling, thereby subverting the output of an asymmetrical division to the production of two highly self-renewing cells. Mechanistically, PEDF induced a non-canonical activation of the NF-κB pathway, leading to the dismissal of the transcriptional co-repressor N-CoR from specific Notch-responsive promoters. Our data provide a basis for stemness regulation in vascular niches and indicate that Notch and PEDF cooperate to regulate self-renewal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PEDF interaction with Notch signaling regulates Notch-dependent transcription and neurosphere formation.
Figure 2: Notch signaling is restricted to GLAST and Sox2 double-positive cells and can be increased by PEDF infusion.
Figure 3: PEDF regulates self-renewal in concert with Notch transcriptional activity.
Figure 4: PEDF and Notch regulate EGF-dependent mitogenic response in adult NSCs.
Figure 5: PEDF regulates Notch-dependent transcription and self-renewal by inducing the dismissal of N-CoR.
Figure 6: PEDF promotes dismissal of N-CoR by inducing NFκB-p65.
Figure 7: Endogenous PEDF regulates N-CoR subcellular distribution and activation of NSCs.

Similar content being viewed by others

References

  1. Morrison, S.J. & Kimble, J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441, 1068–1074 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Wu, M. et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell 1, 541–554 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Riquelme, P.A., Drapeau, E. & Doetsch, F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Phil. Trans. R. Soc. Lond. B 363, 123–137 (2008).

    Article  Google Scholar 

  4. Zhao, C., Deng, W. & Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Palmer, T.D., Willhoite, A.R. & Gage, F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tavazoie, M. et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 279–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Ramírez-Castillejo, C. et al. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat. Neurosci. 9, 331–339 (2006).

    Article  PubMed  Google Scholar 

  10. Tombran-Tink, J. & Barnstable, C.J. PEDF: a multifaceted neurotrophic factor. Nat. Rev. Neurosci. 4, 628–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Notari, L. et al. Identification of a lipase-linked cell membrane receptor for pigment epithelium–derived factor. J. Biol. Chem. 281, 38022–38037 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Chiba, S. Notch signaling in stem cell systems. Stem Cells 24, 2437–2447 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Louvi, A. & Artavanis-Tsakonas, S. Notch signaling in vertebrate neural development. Nat. Rev. Neurosci. 7, 93–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Bray, S.J. Notch signaling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Bio. 7, 678–689 (2006).

    Article  CAS  Google Scholar 

  15. Alexson, T.O., Hitoshi, S., Coles, B.L., Bernstein, A. & van der Kooy, D. Notch signaling is required to maintain all neural stem cell populations—irrespective of spatial or temporal niche. Dev. Neurosci. 28, 34–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Androutsellis-Theotokis, A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Hitoshi, S. et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 16, 846–858 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohtsuka, T., Sakamoto, M., Guillemot, F. & Kageyama, R. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467–30474 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Duncan, A.W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 6, 314–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Mizutani, K., Yoon, K., Dang, L., Tokunaga, A. & Gaiano, N. Differential Notch signaling distinguishes neural stem cells from intermediate progenitors. Nature 449, 351–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Breunig, J.J., Silbereis, J., Vaccarino, F.M., Sestan, N. & Rakic, P. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc. Natl. Acad. Sci. USA 104, 20558–20563 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jarriault, S. et al. Signaling downstream of activated mammalian Notch. Nature 377, 355–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Campos, L.S., Decker, L., Taylor, V. & Skarnes, W. Notch, epidermal growth factor receptor, and beta1-integrin pathways are coordinated in neural stem cells. J. Biol. Chem. 281, 5300–5309 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Mori, T. et al. Inducible gene deletion in astroglia and radial glia—a valuable tool for functional and lineage analysis. Glia 54, 21–34 (2006).

    Article  PubMed  Google Scholar 

  25. Sun, Y., Goderie, S.K. & Temple, S. Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells. Neuron 45, 873–886 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y.W. et al. Presenilin/gamma-secretase–dependent processing of beta-amyloid precursor protein regulates EGF receptor expression. Proc. Natl. Acad. Sci. USA 104, 10613–10618 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hermanson, O., Jepsen, K. & Rosenfeld, M.G. N-CoR controls differentiation of neural stem cells into astrocytes. Nature 419, 934–939 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Kao, H.Y. et al. A histone deacetylase co-repressor complex regulates the Notch signal transduction pathway. Genes Dev. 12, 2269–2277 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosenfeld, M.G., Lunyak, V.V. & Glass, C.K. Sensors and signals: a coactivator/co-repressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20, 1405–1428 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Reizis, B. & Leder, P. Direct induction of T lymphocyte–specific gene expression by the mammalian Notch signaling pathway. Genes Dev. 16, 295–300 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yabe, T., Sanagi, T., Schwartz, J.P. & Yamada, H. Pigment epithelium–derived factor induces pro-inflammatory genes in neonatal astrocytes through activation of NF-kappaB and CREB. Glia 50, 223–234 (2005).

    Article  PubMed  Google Scholar 

  32. Yabe, T., Wilson, D. & Schwartz, J.P. NFkappaB activation is required for the neuroprotective effects of pigment epithelium–derived factor (PEDF) on cerebellar granule neurons. J. Biol. Chem. 276, 43313–43319 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Denis-Donini, S., Caprini, A., Frassoni, C. & Grilli, M. Members of the NF-kappaB family expressed in zones of active neurogenesis in the postnatal and adult mouse brain. Brain Res. Dev. Brain Res. 154, 81–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, L.F. & Greene, W.C. Shaping the nuclear action of NF-kappaB. Nat. Rev. Mol. Cell Bio. 5, 392–401 (2004).

    Article  CAS  Google Scholar 

  35. DiDonato, J. et al. Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16, 1295–1304 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harhaj, E.W. & Sun, S.C. Regulation of RelA subcellular localization by a putative nuclear export signal and p50. Mol. Cell. Biol. 19, 7088–7095 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carlén, M. et al. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat. Neurosci. 12, 259–267 (2009).

    Article  PubMed  Google Scholar 

  38. Cai, J., Jiang, W.G., Grant, M.B. & Boulton, M. Pigment epithelium–derived factor inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1. J. Biol. Chem. 281, 3604–3613 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Ciccolini, F., Mandl, C., Holzl-Wenig, G., Kehlenbach, A. & Hellwig, A. Prospective isolation of late development multipotent precursors whose migration is promoted by EGFR. Dev. Biol. 284, 112–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Yoon, K. & Gaiano, N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat. Neurosci. 8, 709–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Sang, L., Coller, H.A. & Roberts, J.M. Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321, 1095–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chung, C. et al. Anti-angiogenic pigment epithelium-derived factor regulates hepatocyte triglyceride content through adipose triglyceride lipase (ATGL). J. Hepatol. 48, 471–478 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Ang, H.L. & Tergaonkar, V. Notch and NFkappaB Signaling pathways: do they collaborate in normal vertebrate brain development and function? Bioessays 29, 1039–1047 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Espinosa, L., Santos, S., Ingles-Esteve, J., Munoz-Canoves, P. & Bigas, A. p65-NFkappaB synergizes with Notch to activate transcription by triggering cytoplasmic translocation of the nuclear receptor corepressor N-CoR. J. Cell Sci. 115, 1295–1303 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Givogri, M.I. et al. Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev. Neurosci. 28, 81–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Hsieh, J. & Gage, F.H. Chromatin remodeling in neural development and plasticity. Curr. Opin. Cell Biol. 17, 664–671 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Baek, S.H. et al. Exchange of N-CoR co-repressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 110, 55–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Ferrón, S.R. et al. A combined ex/in vivo assay to detect effects of exogenously added factors in neural stem cells. Nat. Protoc. 2, 849–859 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Bigas, J.L. de la Pompa, N. Gaiano, W.C. Greene, O. Hermanson, S. Hitoshi, A. Israel, K. Jepsen, M. Karin, R. Kopan, G. Leclercq, M.G. Rosenfeld, S. Sun, D. van der Kooy, Y. Zhan and V. Meni for kindly providing constructs and reagents. We also thank E. Porlan and H. Mira for technical advice, M.P. Rubio for excellent technical assistance, and E. Porlan and S.R. Ferrón for critical reading of the manuscript and valuable discussions. We gratefully acknowledge the help of M.A. Marqués-Torrejón with the infusion experiments and of A. Martínez and D. Gil with cytometry. We are also grateful to E. Lai for comments on the manuscript. This work was supported by grants from Ministerio de Ciencia e Innovación (SAF Program), Ministerio de Sanidad (Red Tercel, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED), Generalitat Valenciana (Programa Prometeo) and Fundación 'la Caixa'. C.A.-A. was a recipient of a Formación del Profesorado Universitario predoctoral fellowship. J.M.M.-R. and A.C.D. were funded by CIBERNED.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors designed and discussed the experiments. C.A.-A. conducted most of the cell culture and biochemistry experiments on the relationship between PEDF and Notch, Notch/EGFR asymmetry and the role of N-CoR and p65, as well as the infusion experiments and in vivo analyses. C.A.-A. and J.M.M.-R. performed the FACS experiments and analyses with TNR cells, ChIP studies and luciferase assays. A.C.D. contributed to immunohistochemistry analyses and multipotency assays. I.F. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Isabel Fariñas.

Ethics declarations

Competing interests

The authors have an active patent on the use of PEDF for stem-cell renewal.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 3237 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreu-Agulló, C., Morante-Redolat, J., Delgado, A. et al. Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat Neurosci 12, 1514–1523 (2009). https://doi.org/10.1038/nn.2437

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2437

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing