Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conditional proteomics approach to identify proteins involved in zinc homeostasis

Abstract

Zinc signaling and dynamics play significant roles in many physiological responses and diseases. To understand the physiological roles of zinc in detail, comprehensive identification of proteins under high concentration of mobile zinc ion is crucial. We developed a 'conditional proteomics' approach to identify proteins involved in zinc homeostasis based on a chemical proteomic strategy that utilizes designer zinc-responsive labeling reagents to tag such proteins and quantitative mass spectrometry for their identification. We used this method to elucidate zinc dyshomeostasis induced by nitric-oxide-triggered oxidative stress in glioma cells, and we unveiled dynamic changes of the zinc-related proteomes. Moreover, we characterized unknown zinc-rich vesicles generated by oxidative stress as endoplasmic-reticulum- and Golgi-related vesicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conditional proteomics by Zn2+-enhanced chemical labeling.
Figure 2: Activation of AIZin reagents by Zn2+ coordination.
Figure 3: Conditional protein labeling in live C6 cells treated with SNOC.
Figure 4: Proteomic analysis of labeled proteins in NO-stimulated C6 cells.

Similar content being viewed by others

References

  1. Frederickson, C.J., Koh, J.Y. & Bush, A.I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6, 449–462 (2005).

    Article  CAS  Google Scholar 

  2. Sensi, S.L., Paoletti, P., Bush, A.I. & Sekler, I. Zinc in the physiology and pathology of the CNS. Nat. Rev. Neurosci. 10, 780–791 (2009).

    Article  CAS  Google Scholar 

  3. Chang, C.J. Searching for harmony in transition-metal signaling. Nat. Chem. Biol. 11, 744–747 (2015).

    Article  CAS  Google Scholar 

  4. Komatsu, K., Kikuchi, K., Kojima, H., Urano, Y. & Nagano, T. Selective zinc sensor molecules with various affinities for Zn2+, revealing dynamics and regional distribution of synaptically released Zn2+ in hippocampal slices. J. Am. Chem. Soc. 127, 10197–10204 (2005).

    Article  CAS  Google Scholar 

  5. Nolan, E.M. et al. Zinspy sensors with enhanced dynamic range for imaging neuronal cell zinc uptake and mobilization. J. Am. Chem. Soc. 128, 15517–15528 (2006).

    Article  CAS  Google Scholar 

  6. Domaille, D.W., Que, E.L. & Chang, C.J. Synthetic fluorescent sensors for studying the cell biology of metals. Nat. Chem. Biol. 4, 168–175 (2008).

    Article  CAS  Google Scholar 

  7. Yuet, K.P. et al. Cell-specific proteomic analysis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 112, 2705–2710 (2015).

    Article  CAS  Google Scholar 

  8. Woo, C.M., Iavarone, A.T., Spiciarich, D.R., Palaniappan, K.K. & Bertozzi, C.R. Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nat. Methods 12, 561–567 (2015).

    Article  CAS  Google Scholar 

  9. Hulce, J.J., Cognetta, A.B., Niphakis, M.J., Tully, S.E. & Cravatt, B.F. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods 10, 259–264 (2013).

    Article  Google Scholar 

  10. Lanning, B.R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol. 10, 760–767 (2014).

    Article  CAS  Google Scholar 

  11. Niphakis, M.J. et al. A global map of lipid-binding proteins and their ligandability in cells. Cell 161, 1668–1680 (2015).

    Article  CAS  Google Scholar 

  12. Rhee, H.W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  Google Scholar 

  13. Lam, S.S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54 (2015).

    Article  CAS  Google Scholar 

  14. Fujishima, S.H., Yasui, R., Miki, T., Ojida, A. & Hamachi, I. Ligand-directed acyl imidazole chemistry for labeling of membrane-bound proteins on live cells. J. Am. Chem. Soc. 134, 3961–3964 (2012).

    Article  CAS  Google Scholar 

  15. Miki, T. et al. LDAI-based chemical labeling of intact membrane proteins and its pulse-chase analysis under live cell conditions. Chem. Biol. 21, 1013–1022 (2014).

    Article  CAS  Google Scholar 

  16. Finney, L.A. & O'Halloran, T.V. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300, 931–936 (2003).

    Article  CAS  Google Scholar 

  17. Wei, G., Hough, C.J., Li, Y. & Sarvey, J.M. Characterization of extracellular accumulation of Zn2+ during ischemia and reperfusion of hippocampus slices in rat. Neuroscience 125, 867–877 (2004).

    Article  CAS  Google Scholar 

  18. Cuajungco, M.P. & Lees, G.J. Nitric oxide generators produce accumulation of chelatable zinc in hippocampal neuronal perikarya. Brain Res. 799, 118–129 (1998).

    Article  CAS  Google Scholar 

  19. Frederickson, C.J., Maret, W. & Cuajungco, M.P. Zinc and excitotoxic brain injury: a new model. Neuroscientist 10, 18–25 (2004).

    Article  CAS  Google Scholar 

  20. Colvin, R.A., Holmes, W.R., Fontaine, C.P. & Maret, W. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2, 306–317 (2010).

    Article  CAS  Google Scholar 

  21. Sensi, S.L. et al. Modulation of mitochondrial function by endogenous Zn2+ pools. Proc. Natl. Acad. Sci. USA 100, 6157–6162 (2003).

    Article  CAS  Google Scholar 

  22. Bossy-Wetzel, E. et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41, 351–365 (2004).

    Article  CAS  Google Scholar 

  23. Haase, H. & Beyersmann, D. Intracellular zinc distribution and transport in C6 rat glioma cells. Biochem. Biophys. Res. Commun. 296, 923–928 (2002).

    Article  CAS  Google Scholar 

  24. Haase, H. & Beyersmann, D. Uptake and intracellular distribution of labile and total Zn(II) in C6 rat glioma cells investigated with fluorescent probes and atomic absorption. Biometals 12, 247–254 (1999).

    Article  CAS  Google Scholar 

  25. Dayon, L. et al. Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal. Chem. 80, 2921–2931 (2008).

    Article  CAS  Google Scholar 

  26. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  Google Scholar 

  27. Hwang, J.J., Lee, S.J., Kim, T.Y., Cho, J.H. & Koh, J.Y. Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. J. Neurosci. 28, 3114–3122 (2008).

    Article  CAS  Google Scholar 

  28. Liuzzi, J.P., Guo, L., Yoo, C. & Stewart, T.S. Zinc and autophagy. Biometals 27, 1087–1096 (2014).

    Article  CAS  Google Scholar 

  29. Lee, S.J., Cho, K.S. & Koh, J.Y. Oxidative injury triggers autophagy in astrocytes: the role of endogenous zinc. Glia 57, 1351–1361 (2009).

    Article  Google Scholar 

  30. Brandizzi, F. & Barlowe, C. Organization of the ER-Golgi interface for membrane traffic control. Nat. Rev. Mol. Cell Biol. 14, 382–392 (2013).

    Article  CAS  Google Scholar 

  31. Allan, B.B., Moyer, B.D. & Balch, W.E. Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289, 444–448 (2000).

    Article  CAS  Google Scholar 

  32. Hamlin, J.N.R. et al. Scyl1 scaffolds class II Arfs to specific subcomplexes of coatomer through the γ-COP appendage domain. J. Cell Sci. 127, 1454–1463 (2014).

    Article  CAS  Google Scholar 

  33. Ben-Tekaya, H., Miura, K., Pepperkok, R. & Hauri, H.P. Live imaging of bidirectional traffic from the ERGIC. J. Cell Sci. 118, 357–367 (2005).

    Article  CAS  Google Scholar 

  34. Que, E.L. et al. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks. Nat. Chem. 7, 130–139 (2015).

    Article  CAS  Google Scholar 

  35. Jeong, J. et al. Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers-Danlos syndrome. Proc. Natl. Acad. Sci. USA 109, E3530–E3538 (2012).

    Article  CAS  Google Scholar 

  36. Roh, H.C., Collier, S., Guthrie, J., Robertson, J.D. & Kornfeld, K. Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans. Cell Metab. 15, 88–99 (2012).

    Article  CAS  Google Scholar 

  37. Ishihama, Y., Rappsilber, J., Andersen, J.S. & Mann, M. Microcolumns with self-assembled particle frits for proteomics. J. Chromatogr. A 979, 233–239 (2002).

    Article  CAS  Google Scholar 

  38. Olsen, J.V. et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4, 2010–2021 (2005).

    Article  CAS  Google Scholar 

  39. Olsen, J.V., Ong, S.E. & Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteomics 3, 608–614 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Kitagawa and D. Umeyama (Kyoto University, Japan) for X-ray structure determination. This work was supported by the Japan Science and Technology Agency (JST) Core Research for Evolutional Science and Technology (CREST) of Molecular Technology for I.H. and a Research Fellowship from the Japan Society for the Promotion of Science (JSPS) for Young Scientists for T.M. (25-4988) and Y.N. (16J10316).

Author information

Authors and Affiliations

Authors

Contributions

T.M. and I.H. designed the project. T.M., M.A., and Y.N. performed synthesis and chemical labeling. T.M., M.W., and Y.I. performed LC–MS/MS analysis. T.M. and S.K. constructed the expression plasmids. The manuscript was written by T.M. and I.H., according to discussion with all authors.

Corresponding author

Correspondence to Itaru Hamachi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19 and Supplementary Note (PDF 14425 kb)

Supplementary Table 1

The list of labeled peptides by AIZin-1 in HeLa cell lysates (XLSX 37 kb)

Supplementary Table 2

The protein list and statistical analyses for proteomic data of labeled proteins in NO-stimulated C6 cells. (XLSX 366 kb)

Supplementary Table 3

The peptide sequences identified in the proteomic analysis of labeled proteins in NO-stimulated C6 cells. (XLSX 507 kb)

Supplementary Table 4

The protein list for proteomic analysis of labeled proteins in NO-stimulated C6 cells in the presence or absence of TPEN. (XLSX 84 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miki, T., Awa, M., Nishikawa, Y. et al. A conditional proteomics approach to identify proteins involved in zinc homeostasis. Nat Methods 13, 931–937 (2016). https://doi.org/10.1038/nmeth.3998

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3998

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research