Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transposon-mediated genome manipulation in vertebrates

An Erratum to this article was published on 01 July 2009

This article has been updated

Abstract

Transposable elements are DNA segments with the unique ability to move about in the genome. This inherent feature can be exploited to harness these elements as gene vectors for genome manipulation. Transposon-based genetic strategies have been established in vertebrate species over the last decade, and current progress in this field suggests that transposable elements will serve as indispensable tools. In particular, transposons can be applied as vectors for somatic and germline transgenesis, and as insertional mutagens in both loss-of-function and gain-of-function forward mutagenesis screens. In addition, transposons will gain importance in future cell-based clinical applications, including nonviral gene transfer into stem cells and the rapidly developing field of induced pluripotent stem cells. Here we provide an overview of transposon-based methods used in vertebrate model organisms with an emphasis on the mouse system and highlight the most important considerations concerning genetic applications of the transposon systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of transposition and general organization of class I and class II transposable elements.
Figure 2: Summary of the basic gene trapping strategies.
Figure 3: Transposon delivery methods in embryonic stem cells.
Figure 4: In vivo germline mutagenesis of the mouse with transposable elements.

Similar content being viewed by others

Change history

  • 11 June 2009

    NOTE: In the version of this article initially published, a part of Figure 1b was incorrectly labeled. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Feng, Q., Moran, J.V., Kazazian, H.H., Jr. & Boeke, J.D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996).

    Article  CAS  Google Scholar 

  2. Mathias, S.L., Scott, A.F., Kazazian, H.H. Jr., Boeke, J.D. & Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810 (1991).

    Article  CAS  Google Scholar 

  3. Luan, D.D., Korman, M.H., Jakubczak, J.L. & Eickbush, T.H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).

    Article  CAS  Google Scholar 

  4. Cost, G.J., Feng, Q., Jacquier, A. & Boeke, J.D. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21, 5899–5910 (2002).

    Article  CAS  Google Scholar 

  5. Zwaal, R.R., Broeks, A., van Meurs, J., Groenen, J.T. & Plasterk, R.H. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc. Natl. Acad. Sci. USA 90, 7431–7435 (1993).

    Article  CAS  Google Scholar 

  6. Thibault, S.T. et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet. 36, 283–287 (2004). Demonstration that full genome coverage in Drosophila cannot be done by using a single transposon owing to distinct preferences for genomic insertion sites.

    Article  CAS  Google Scholar 

  7. Ivics, Z., Hackett, P.B., Plasterk, R.H. & Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997). First report on the resurrection of an extinct transposon and the first class II transposon ever reported to jump in a vertebrate cell.

    Article  CAS  Google Scholar 

  8. Mates, L., Izsvak, Z. & Ivics, Z. Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biol. 8 (Suppl. 1), S1 (2007).

    Article  Google Scholar 

  9. Izsvak, Z., Ivics, Z. & Plasterk, R.H. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J. Mol. Biol. 302, 93–102 (2000).

    Article  CAS  Google Scholar 

  10. Zayed, H., Izsvak, Z., Walisko, O. & Ivics, Z. Development of hyperactive Sleeping Beauty transposon vectors by mutational analysis. Mol. Ther. 9, 292–304 (2004).

    Article  CAS  Google Scholar 

  11. Ding, S. et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122, 473–483 (2005).Report describes efficient transposition of the insect piggyBac transposon in mice.

    Article  CAS  Google Scholar 

  12. Koga, A. et al. The Tol1 element of medaka fish is transposed with only terminal regions and can deliver large DNA fragments into the chromosomes. J. Hum. Genet. 52, 1026–1030 (2007).

    Article  CAS  Google Scholar 

  13. Balciunas, D. et al. Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet. 2, e169 (2006).

    Article  Google Scholar 

  14. Urasaki, A., Morvan, G. & Kawakami, K. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174, 639–649 (2006).

    Article  CAS  Google Scholar 

  15. Kaufman, C.D., Izsvak, Z., Katzer, A. & Ivics, Z. Frog Prince transposon-based RNAi vectors mediate efficient gene knockdown in human cells. J. RNAi Gene Silencing 1, 97–104 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ivics, Z. & Izsvak, Z. Transposons for gene therapy! Curr. Gene Ther. 6, 593–607 (2006).

    Article  CAS  Google Scholar 

  17. Mátés, L. et al. Molecular evolution of a hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. advance online publication, doi: 10.1038/ng.343 (3 May 2009). Report of a hyperactive Sleeping Beauty transposase that mediates stable gene transfer at an efficiency similar to that of viral vectors in primary human stem cells and in mice.

  18. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  19. Cadinanos, J. & Bradley, A. Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res. 35, e87 (2007).

    Article  Google Scholar 

  20. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009). This and the next paper show how to use the piggyBac transposon as a vector for iPSC reprogramming.

    Article  CAS  Google Scholar 

  21. Yusa, K., Rad, R., Takeda, J. & Bradley, A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat. Methods 6, 363–369 (2009).

    Article  CAS  Google Scholar 

  22. Henikoff, S. Conspiracy of silence among repeated transgenes. Bioessays 20, 532–535 (1998).

    Article  CAS  Google Scholar 

  23. Sasakura, Y., Awazu, S., Chiba, S. & Satoh, N. Germ-line transgenesis of the Tc1/mariner superfamily transposon Minos in Ciona intestinalis. Proc. Natl. Acad. Sci. USA 100, 7726–7730 (2003).

    Article  CAS  Google Scholar 

  24. Koga, A., Cheah, F.S., Hamaguchi, S., Yeo, G.H. & Chong, S.S. Germline transgenesis of zebrafish using the medaka Tol1 transposon system. Dev. Dyn. 237, 2466–2474 (2008).

    Article  CAS  Google Scholar 

  25. Kawakami, K., Shima, A. & Kawakami, N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc. Natl. Acad. Sci. USA 97, 11403–11408 (2000).

    Article  CAS  Google Scholar 

  26. Hamlet, M.R. et al. Tol2 transposon-mediated transgenesis in Xenopus tropicalis. Genesis 44, 438–445 (2006).

    Article  Google Scholar 

  27. Davidson, A.E. et al. Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev. Biol. 263, 191–202 (2003).

    Article  CAS  Google Scholar 

  28. Hermanson, S., Davidson, A.E., Sivasubbu, S., Balciunas, D. & Ekker, S.C. Sleeping Beauty transposon for efficient gene delivery. Methods Cell Biol. 77, 349–362 (2004).

    Article  CAS  Google Scholar 

  29. Sinzelle, L. et al. Generation of trangenic Xenopus laevis using the Sleeping Beauty transposon system. Transgenic Res. 15, 751–760 (2006).

    Article  CAS  Google Scholar 

  30. Grabher, C. et al. Transposon-mediated enhancer trapping in medaka. Gene 322, 57–66 (2003).

    Article  CAS  Google Scholar 

  31. Sato, Y. et al. Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev. Biol. 305, 616–624 (2007).

    Article  CAS  Google Scholar 

  32. Dupuy, A.J. et al. Mammalian germ-line transgenesis by transposition. Proc. Natl. Acad. Sci. USA 99, 4495–4499 (2002).

    Article  CAS  Google Scholar 

  33. Wilber, A. et al. RNA as a source of transposase for sleeping beauty-mediated gene insertion and expression in somatic cells and tissues. Mol. Ther. 13, 625–630 (2006).

    Article  CAS  Google Scholar 

  34. Carlson, C.M., Frandsen, J.L., Kirchhof, N., McIvor, R.S. & Largaespada, D.A. Somatic integration of an oncogene-harboring Sleeping Beauty transposon models liver tumor development in the mouse. Proc. Natl. Acad. Sci. USA 102, 17059–17064 (2005).

    Article  CAS  Google Scholar 

  35. Luo, G., Ivics, Z., Izsvak, Z. & Bradley, A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 95, 10769–10773 (1998).

    Article  CAS  Google Scholar 

  36. Luo, G. et al. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat. Genet. 26, 424–429 (2000).

    Article  CAS  Google Scholar 

  37. Yusa, K. et al. Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom's syndrome gene. Nature 429, 896–899 (2004).

    Article  CAS  Google Scholar 

  38. Wang, W. et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 105, 9290–9295 (2008).

    Article  CAS  Google Scholar 

  39. Wang, W., Bradley, A. & Huang, Y. A piggyBac transposon-based genome-wide library of insertionally mutated Blm-deficient murine ES cells. Genome Res (2009).

  40. Hansen, G.M. et al. Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. Genome Res. 18, 1670–1679 (2008).

    Article  CAS  Google Scholar 

  41. Takeda, J., Izsvak, Z. & Ivics, Z. Insertional mutagenesis of the mouse germline with Sleeping Beauty transposition. Methods Mol. Biol. 435, 109–125 (2008).

    Article  CAS  Google Scholar 

  42. Dupuy, A.J., Fritz, S. & Largaespada, D.A. Transposition and gene disruption in the male germline of the mouse. Genesis 30, 82–88 (2001).

    Article  CAS  Google Scholar 

  43. Horie, K. et al. Efficient chromosomal transposition of a Tc1/mariner- like transposon Sleeping Beauty in mice. Proc. Natl. Acad. Sci. USA 98, 9191–9196 (2001).

    Article  CAS  Google Scholar 

  44. Horie, K. et al. Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Mol. Cell. Biol. 23, 9189–9207 (2003).

    Article  CAS  Google Scholar 

  45. Carlson, C.M. et al. Transposon mutagenesis of the mouse germline. Genetics 165, 243–256 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fischer, S.E., Wienholds, E. & Plasterk, R.H. Regulated transposition of a fish transposon in the mouse germ line. Proc. Natl. Acad. Sci. USA 98, 6759–6764 (2001).

    Article  CAS  Google Scholar 

  47. Kitada, K. et al. Transposon-tagged mutagenesis in the rat. Nat. Methods 4, 131–133 (2007).

    Article  CAS  Google Scholar 

  48. Lu, B. et al. Generation of rat mutants using a coat color-tagged Sleeping Beauty transposon system. Mamm. Genome 18, 338–346 (2007).

    Article  CAS  Google Scholar 

  49. Yae, K. et al. Sleeping beauty transposon-based phenotypic analysis of mice: lack of Arpc3 results in defective trophoblast outgrowth. Mol. Cell. Biol. 26, 6185–6196 (2006).

    Article  CAS  Google Scholar 

  50. Geurts, A.M. et al. Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. PLoS Genet. 2, e156 (2006).

    Article  Google Scholar 

  51. Keng, V.W. et al. Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Nat. Methods 2, 763–769 (2005). This paper shows that local hopping of the Sleeping Beauty transposon can be applied for chromosomal region–specific saturation mutagenesis in mice.

    Article  CAS  Google Scholar 

  52. Drabek, D. et al. Transposition of the Drosophila hydei Minos transposon in the mouse germ line. Genomics 81, 108–111 (2003).

    Article  CAS  Google Scholar 

  53. Zagoraiou, L. et al. In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues. Proc. Natl. Acad. Sci. USA 98, 11474–11478 (2001).

    Article  CAS  Google Scholar 

  54. Wu, S., Ying, G., Wu, Q. & Capecchi, M.R. Toward simpler and faster genome-wide mutagenesis in mice. Nat. Genet. 39, 922–930 (2007).

    Article  CAS  Google Scholar 

  55. Kawakami, K. & Noda, T. Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics 166, 895–899 (2004).

    Article  CAS  Google Scholar 

  56. Kawakami, K. et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell 7, 133–144 (2004).

    Article  CAS  Google Scholar 

  57. Parinov, S., Kondrichin, I., Korzh, V. & Emelyanov, A. Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev. Dyn. 231, 449–459 (2004).

    Article  CAS  Google Scholar 

  58. Sivasubbu, S. et al. Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mech. Dev. 123, 513–529 (2006).

    Article  CAS  Google Scholar 

  59. Balciunas, D. et al. Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genomics 5, 62 (2004).

    Article  Google Scholar 

  60. An, W. et al. Active retrotransposition by a synthetic L1 element in mice. Proc. Natl. Acad. Sci. USA 103, 18662–18667 (2006).

    Article  CAS  Google Scholar 

  61. An, W. et al. Conditional activation of a single-copy L1 transgene in mice by Cre. Genesis 46, 373–383 (2008).

    Article  CAS  Google Scholar 

  62. Collier, L.S., Carlson, C.M., Ravimohan, S., Dupuy, A.J. & Largaespada, D.A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272–276 (2005). This and the following paper demonstrated that the Sleeping Beauty transposon can be used as an efficient somatic mutagen to drive tumorigenesis in mice.

    Article  CAS  Google Scholar 

  63. Dupuy, A.J., Akagi, K., Largaespada, D.A., Copeland, N.G. & Jenkins, N.A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005).

    Article  CAS  Google Scholar 

  64. Largaespada, D.A. & Collier, L.S. Transposon-mediated mutagenesis in somatic cells: identification of transposon-genomic DNA junctions. Methods Mol. Biol. 435, 95–108 (2008).

    Article  CAS  Google Scholar 

  65. Su, Q. et al. A DNA transposon-based approach to validate oncogenic mutations in the mouse. Proc. Natl. Acad. Sci. USA 105, 19904–19909 (2008).

    Article  CAS  Google Scholar 

  66. Keng, V.W. et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat. Biotechnol. 27, 264–274 (2009).

    Article  CAS  Google Scholar 

  67. Starr, T.K. et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323, 1747–1750 (2009).

    Article  CAS  Google Scholar 

  68. Aitman, T.J. et al. Progress and prospects in rat genetics: a community view. Nat. Genet. 40, 516–522 (2008).

    Article  CAS  Google Scholar 

  69. Park, I.H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  Google Scholar 

  70. Yant, S.R. et al. High-resolution genome-wide mapping of transposon integration in mammals. Mol. Cell. Biol. 25, 2085–2094 (2005).

    Article  CAS  Google Scholar 

  71. Miskey, C., Izsvak, Z., Plasterk, R.H. & Ivics, Z. The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res. 31, 6873–6881 (2003).

    Article  CAS  Google Scholar 

  72. Miskey, C. et al. The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends. Mol. Cell Biol. 27, 4589–4600 (2007).

    Article  CAS  Google Scholar 

  73. Clark, K.J., Carlson, D.F., Leaver, M.J., Foster, L.K. & Fahrenkrug, S.C. Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells. Nucleic Acids Res. 37, 1239–1247 (2009).

    Article  CAS  Google Scholar 

  74. Wilson, M.H., Coates, C.J. & George, A.L., Jr. PiggyBac transposon-mediated gene transfer in human cells. Mol. Ther. 15, 139–145 (2007).

    Article  CAS  Google Scholar 

  75. Emelyanov, A., Gao, Y., Naqvi, N.I. & Parinov, S. Trans-kingdom transposition of the maize dissociation element. Genetics 174, 1095–1104 (2006).

    Article  CAS  Google Scholar 

  76. Sinzelle, L. et al. Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes. Proc. Natl. Acad. Sci. USA 105, 4715–4720 (2008).

    Article  CAS  Google Scholar 

  77. Han, J.S. & Boeke, J.D. A highly active synthetic mammalian retrotransposon. Nature 429, 314–318 (2004). The base composition of an L1 element was altered leading to highly efficient retrotransposition in mammalian cells.

    Article  CAS  Google Scholar 

  78. Cost, G.J. & Boeke, J.D. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37, 18081–18093 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Ivics.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 4824 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivics, Z., Li, M., Mátés, L. et al. Transposon-mediated genome manipulation in vertebrates. Nat Methods 6, 415–422 (2009). https://doi.org/10.1038/nmeth.1332

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing