Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biology of TiO2–oligonucleotide nanocomposites

Abstract

Emerging areas of nanotechnology hold the promise of overcoming the limitations of existing technologies for intracellular manipulation. These new developments provide approaches for the creation of chemical–biological hybrid nanocomposites that can be introduced into cells and subsequently used to initiate intracellular processes or biochemical reactions. Such nanocomposites would advance medical biotechnology, just as they are improving microarray technology and imaging in biology and medicine, and introducing new possibilities in chemistry and material sciences. Here we describe the behaviour of 45-Å nanoparticles of titanium dioxide semiconductor combined with oligonucleotide DNA into nanocomposites in vivo and in vitro. These nanocomposites not only retain the intrinsic photocatalytic capacity of TiO2 and the bioactivity of the oligonucleotide DNA (covalently attached to the TiO2 nanoparticle), but also possess the chemically and biologically unique new property of a light-inducible nucleic acid endonuclease, which could become a new tool for gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic force microscopy image of TiO2–oligonucleotide nanocomposites hybridized with long (phage) DNA.
Figure 2: Scan of a 21 μm × 21 μm area with a single nucleus containing 3.6 × 106 nanoparticles.
Figure 3: PAGE of single-stranded (^) and double-stranded (*) DNA oligonucleotides.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  2. Chan, W.C.-W. & Nie, S.M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  3. Taton, T.A., Mirkin, C.A. & Letsinger, R.L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000).

    Article  CAS  Google Scholar 

  4. Park, S.-J.T., Taton, T.A. & Mirkin, C.A. Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503 (2002).

    Article  CAS  Google Scholar 

  5. Wei, Y., Cao, C., Jin, R. & Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536 (2002).

    Article  Google Scholar 

  6. Mirkin, C.A., Letsinger, R.L., Mucic, R.C. & Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  7. Alivisatos, A.P. et al. Organization of 'nanocrystal molecules' using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  8. Perez, J.M., O'Loughin, T., Simeone, F.J., Weissleder, R. & Josephson, L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc. 124, 2856–2857 (2002).

    Article  CAS  Google Scholar 

  9. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  10. Rajh, T. et al. Surface restructuring of nanoparticles: an efficient route for ligand-metal oxide crosslink. J. Phys. Chem. B 106, 10543–10552 (2002).

    Article  CAS  Google Scholar 

  11. Rajh, T., Nedeljkovic, J., Chen, L.X., Poluektov, O. & Thurnauer, M.C. Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C. J. Phys. Chem. B 103, 3515–3519 (1999).

    Article  CAS  Google Scholar 

  12. Lewis, F.D. et al. Direct measurement of hole transport dynamics in DNA. Nature 406, 51–34 (2000).

    Article  CAS  Google Scholar 

  13. Conwell, E.M. & Rakhmanova, S.V. Polarons in DNA. Proc. Natl Acad. Sci. USA 97, 4556–4560 (2000).

    Article  CAS  Google Scholar 

  14. Von Sonntag, C. The Chemical Basis of Radiation Biology (Taylor & Francis, Philadelphia, 1987).

    Google Scholar 

  15. Yun, C.S., Khitrov, G.A., Vergona, D.E., Reich, N.O. & Strouse, G.F. Enzymatic manipulation of DNA-nanomaterial constructs. J. Am. Chem. Soc. 124, 7644–7645 (2002).

    Article  CAS  Google Scholar 

  16. Rajh, T., Ostafin, A.E., Micic, O.I., Tiede, D.M. & Thurnauer, M.C. Surface modification of small particle TiO2 colloids with cysteine for enhanced photochemical reduction: An EPR study. J. Phys. Chem. 100, 4538–4545 (1996).

    Article  CAS  Google Scholar 

  17. Rajh, T., Saponjic, Z.V. & Micic, O.I. Reactions of hydrous titanium-oxide colloids with strong oxidizing agents. Langmuir 8, 1265–1270 (1992).

    Article  CAS  Google Scholar 

  18. Rajh, T., Thurnauer, M.C., Thiyagarajan, P. & Tiede, D.M. Structural characterization of self-organized TiO2 nanoclusters studied by small angle neutron scattering. J. Phys. Chem. B 103, 2172–2177 (1999).

    Article  CAS  Google Scholar 

  19. Boncheva, M., Scheibler, L., Lincoln, P., Vogel, H. & Akerman, B. Design of oligonucleotide arrays at interfaces. Langmuir 15, 4317–4320 (1999).

    Article  CAS  Google Scholar 

  20. Fillinger, A. & Parkinson, B.A. The adsorption behavior of a rutheninm-based sensitizing dye to nanocrystalline TiO2 - Coverage effects on the external and internal sensitization quantum yields. J. Electrochem. Soc. 146, 4559–4564 (1999).

    Article  CAS  Google Scholar 

  21. Rajh, T. et al. Spin polarization mechanisms in early stages of photoinduced charge separation in surface-modified TiO2 nanoparticles. Chem. Phys. Lett. 344, 31–39 (2001).

    Article  CAS  Google Scholar 

  22. Pichon, B. & Christophe, D. An in vitro transcription system for the study of thyroid-specific transcription. Anal. Biochem. 261, 233 (1998).

    Article  CAS  Google Scholar 

  23. Lai, B., Maser, J., Paunesku, T. & Woloschak, G.E. Report on the workshop of biological applications of X-ray microbeams. Int. J. Radiat. Biol. 78, 749 (2002).

    Article  CAS  Google Scholar 

  24. Paunesku, T. et al. Identification of genes regulated by UV/salicylic acid. Int. J. Radiat. Biol. 76, 189 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.P., N.S., M.P., J.O. and G.W. were supported by National Institute of Health grants CA81375, CA73042, and NS21442; T.P., T.R., G.W., J.M., S.V., N.S., B.L., M.T. and G.W. were supported by the US Department of Energy, Office of Basic Energy Sciences under contract No. W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayle Woloschak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paunesku, T., Rajh, T., Wiederrecht, G. et al. Biology of TiO2–oligonucleotide nanocomposites. Nature Mater 2, 343–346 (2003). https://doi.org/10.1038/nmat875

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat875

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing