Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Parallel cylindrical water nanochannels in Nafion fuel-cell membranes

Abstract

The structure of the Nafion ionomer used in proton-exchange membranes of H2/O2 fuel cells has long been contentious. Using a recently introduced algorithm, we have quantitatively simulated previously published small-angle scattering data of hydrated Nafion. The characteristic ‘ionomer peak’ arises from long parallel but otherwise randomly packed water channels surrounded by partially hydrophilic side branches, forming inverted-micelle cylinders. At 20 vol% water, the water channels have diameters of between 1.8 and 3.5 nm, with an average of 2.4 nm. Nafion crystallites (10 vol%), which form physical crosslinks that are crucial for the mechanical properties of Nafion films, are elongated and parallel to the water channels, with cross-sections of (5 nm)2. Simulations for various other models of Nafion, including Gierke’s cluster and the polymer-bundle model, do not match the scattering data. The new model can explain important features of Nafion, including fast diffusion of water and protons through Nafion and its persistence at low temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Known structural features of Nafion.
Figure 2: Parallel water-channel (inverted-micelle cylinder) model of Nafion.
Figure 3: Effect of hydration on the ionomer peak of Nafion and its simulation by the water-channel model.
Figure 4: Simulated small-angle scattering curves for spherical-cluster models (Gierke, Yeager and local-order models).
Figure 6: Simulated small-angle scattering curves for network models.
Figure 5: Simulations of small-angle scattering for models with elongated polymer structures.

Similar content being viewed by others

References

  1. Gierke, T. D., Munn, G. E. & Wilson, F. C. The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies. J. Polym. Sci. Polym. Phys. Edn 19, 1687–1704 (1981).

    Article  CAS  Google Scholar 

  2. Mauritz, K. A. & Moore, R. B. State of understanding of Nafion. Chem. Rev. 104, 4535–4586 (2004).

    Article  CAS  Google Scholar 

  3. Kreuer, K. D., Paddison, S. J., Spohr, E. & Schuster, M. Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637–4678 (2004).

    Article  CAS  Google Scholar 

  4. Dreyfus, B., Gebel, G., Aldebert, P., Pineri, M. & Escoubes, M. Distribution of the ‘micelles’ in hydrated perfluorinated ionomer membranes from SANS experiments. J. Phys. France 51, 1341–1354 (1990).

    Article  CAS  Google Scholar 

  5. Gebel, G. & Lambard, J. Small-angle scattering study of water-swollen perfluorinated ionomer membranes. Macromolecules 30, 7914–7920 (1997).

    Article  CAS  Google Scholar 

  6. Kumar, S. & Pineri, M. Interpretation of small-angle X-ray and neutron scattering data for perfluorosulfonated ionomer membranes. J. Polym. Sci. B 24, 1767–1782 (1986).

    Article  CAS  Google Scholar 

  7. Ioselevich, A. S., Kornyshev, A. A. & Steinke, J. H. G. Fine morphology of proton-conducting ionomers. J. Phys. Chem. B 108, 11953–11963 (2004).

    Article  CAS  Google Scholar 

  8. Jang, S. S., Molinero, V., Çagin, T. & Goddard III, W. A. Effect of monomeric sequence on nanostructure and water dynamics in Nafion 117. Solid State Ion. 175, 805–808 (2004).

    Article  CAS  Google Scholar 

  9. Yeager, H. L. in Perfluorinate Ionomer Membranes, ACS Symp. Ser., Vol. 180 (eds Yeager, H. L. & Eisenberg, A.) 41–64 (American Chemical Society, Washington, 1982).

    Book  Google Scholar 

  10. Starkweather, H. W. Jr. Crystallinity in perfluorosulfonic acid ionomers and related polymers. Macromolecules 15, 320–323 (1982).

    Article  CAS  Google Scholar 

  11. Haubold, H.-G., Vad, T., Jungbluth, H. & Hiller, P. Nanostructure of NAFION: A SAXS study. Electrochim. Acta 46, 1559–1563 (2001).

    Article  CAS  Google Scholar 

  12. Litt, M. H. A reevaluation of Nafion morphology. Polym. Preprint 38, 80–81 (1997).

    CAS  Google Scholar 

  13. Krivandin, A. V., Solov’eva, A. B., Glagolev, N. N., Shatalova, O. V. & Kotova, S. L. Structure alterations of perfluorinated sulfocationic membranes under the action of ethylene glycol (SAXS and WAXS studies). Polymer 44, 5789–5796 (2003).

    Article  CAS  Google Scholar 

  14. Kreuer, K. D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185, 29–39 (2001).

    Article  CAS  Google Scholar 

  15. Kim, M.-H., Glinka, C. J., Grot, S. A. & Grot, W. G. SANS study of the effects of water vapor sorption on the nanoscale structure of perfluorinated sulfonic acid (NAFION) Membranes. Macromolecules 39, 4775–4787 (2006).

    Article  CAS  Google Scholar 

  16. Rollet, A.-L., Diat, O. & Gebel, G. A new insight into Nafion structure. J. Phys. Chem. B 21, 3033–3036 (2002).

    Article  Google Scholar 

  17. Rubatat, L., Rollet, A.-L., Gebel, G. & Diat, O. Evidence of elongated polymeric aggregates in Nafion. Macromolecules 35, 4050–4055 (2002).

    Article  CAS  Google Scholar 

  18. Rubatat, L., Gebel, G. & Diat, O. Fibrillar structure of Nafion: Matching Fourier and real space studies of corresponding films and solutions. Macromolecules 37, 7772–7783 (2004).

    Article  CAS  Google Scholar 

  19. Londono, J. D., Davidson, R. V. & Mazur, S. SAXS study of elongated ionic clusters in poly-perfuorosulfonic acid membranes. Abstr. Am. Chem. Soc. Polym. Mater. Sci. Eng. 222, 342 (2001).

    Google Scholar 

  20. van der Heijden, P. C., Rubatat, L. & Diat, O. Orientation of drawn Nafion at molecular and mesoscopic scales. Macromolecules 37, 5327–5336 (2004).

    Article  CAS  Google Scholar 

  21. Page, K. A., Landis, F. A., Phillips, A. K. & Moore, R. B. SAXS Analysis of the thermal relaxation of anisotropic morphologies in oriented Nafion membranes. Macromolecules 39, 3939–3946 (2006).

    Article  CAS  Google Scholar 

  22. Elliott, J. A., Hanna, S., Elliott, A. M. S. & Cooley, G. E. Interpretation of the small-angle X-ray scattering from swollen and oriented perfluorinated ionomer membranes. Macromolecules 33, 4161–4171 (2000).

    Article  CAS  Google Scholar 

  23. Schmidt-Rohr, K. Simulation of small-angle scattering (SAXS or SANS) curves by numerical Fourier transformation. J. Appl. Cryst. 40, 16–25 (2007).

    Article  CAS  Google Scholar 

  24. Cwirko, E. H. & Carbonell, R. G. Interpretation of transport coefficients in Nafion using a parallel pore model. J. Membr. Sci. 67, 227–247 (1992).

    Article  CAS  Google Scholar 

  25. Bontha, J. R. & Pintauro, P. N. Water orientation and ion solvation effects during multicomponent salt partitioning in a Nafion cation-exchange membrane. Chem. Eng. Sci. 49, 3835–3851 (1994).

    Article  CAS  Google Scholar 

  26. Koter, S. Transport of simple electrolyte solutions through ion-exchange membranes-the capillary model. J. Membr. Sci. 206, 201–215 (2002).

    Article  CAS  Google Scholar 

  27. Choi, P., Jalani, N. H. & Datta, R. Thermodynamics and proton transport in Nafion II. Proton diffusion mechanisms and conductivity. J. Electrochem. Soc. 152, E123–E130 (2005).

    Article  CAS  Google Scholar 

  28. Paddison, S. J. Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes. Annu. Rev. Mater. Res. 33, 289–319 (2003).

    Article  CAS  Google Scholar 

  29. Blake, N. P., Petersen, M. K., Voth, G. A. & Metiu, H. Structure of hydrated Na-Nafion polymer membranes. J. Phys. Chem. B 109, 24244–24253 (2005).

    Article  CAS  Google Scholar 

  30. Roche, E. J., Pineri, M., Duplessix, R. & Levelut, A. M. Small-angle scattering studies of Nafion membranes. J. Polym. Sci. Polym. Phys. Edn 19, 1–11 (1981).

    Article  CAS  Google Scholar 

  31. Moore, R. B. & Martin, C. R. Chemical and morphological properties of solution-cast perfluorosulfonate ionomers. Macromolecules 21, 1334–1339 (1988).

    Article  CAS  Google Scholar 

  32. Fujimura, M., Hashimoto, T. & Kawai, H. Small-angle X-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum. Macromolecules 15, 136–144 (1982).

    Article  CAS  Google Scholar 

  33. Chen, Q. & Schmidt-Rohr, K. 19F and 13C NMR signal assignment and analysis in a perfluorinated ionomer (Nafion) by two-dimensional solid-state NMR. Macromolecules 37, 5995–6003 (2004).

    Article  CAS  Google Scholar 

  34. Chen, Q. & Schmidt-Rohr, K. Backbone dynamics of the Nafion Ionomer Studied by 19F–13C solid-state NMR. Macromol. Chem. Phys. 208, 2189–2203 (2007).

    Article  CAS  Google Scholar 

  35. Chu, B., Wu, C. & Buck, W. Light-scattering characterization of poly(tetrafluoroethylene).2. PTFE in perfluorotetracosane-molecular-weight distribution and solution properties. Macromolecules 22, 831–837 (1989).

    Article  CAS  Google Scholar 

  36. Rosi-Schwartz, B. & Mitchell, G. R. Extracting force fields for disordered polymeric materials from neutron scattering data. Polymer 37, 1857–1870 (1996).

    Article  CAS  Google Scholar 

  37. Roche, E. J., Pineri, M., Duplessix, R. & Levelut, A. M. Phase separation in perfluorosolfonate ionomer membranes. J. Polym. Sci. Polym. Phys. Edn 20, 107–116 (1982).

    Article  CAS  Google Scholar 

  38. Guinier, A. X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Dover, New York, 1994).

    Google Scholar 

  39. Klein, R. & D’Aguanno, B. in Light Scattering, Principles and Development (ed. Brown, W.) (Clarendon, Oxford, 1996).

    Google Scholar 

  40. Capeci, S. W., Pintauro, P. N. & Bennion, D. N. The molecular-level interpretation of salt uptake and anion transport in Nafion membranes. J. Electrochem. Soc. 136, 2876–2882 (1989).

    Article  CAS  Google Scholar 

  41. Cappadonia, M., Erning, J. W. & Stimming, U. Proton conduction of Nafion-117 membrane between 140 K and room temperature. J. Electroanal. Chem. 376, 189–193 (1994).

    Article  CAS  Google Scholar 

  42. Saito, M., Hayamizu, K. & Okada, T. Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells. J. Phys. Chem. B 109, 3112–3119 (2005).

    Article  CAS  Google Scholar 

  43. Paddison, S. J. & Paul, R. The nature of proton transport in fully hydrated Nafion. Phys. Chem. Chem. Phys. 4, 1158–1163 (2002).

    Article  CAS  Google Scholar 

  44. Cui, S. T. Molecular self-diffusion in nanoscale cylindrical pores and classical Fick’s law predictions. J. Chem. Phys. 123, 054706 (2005).

    Article  CAS  Google Scholar 

  45. Freger, V. et al. Diffusion of water and ethanol in ion-exchange membranes: Limits of the geometric approach. J. Membr. Sci. 160, 213–224 (1999).

    Article  CAS  Google Scholar 

  46. Ise, M., Kreuer, K. D. & Maier, J. Electroosmotic drag in polymer electrolyte membranes: an electrophoretic NMR study. Solid State Ion. 125, 213–223 (1999).

    Article  CAS  Google Scholar 

  47. Edmondson, C. A. & Fontanella, J. J. Free volume and percolation in S-SEBS and fluorocarbon proton conducting membranes. Solid State Ion. 152–153, 355–361 (2002).

    Article  Google Scholar 

  48. Thompson, E. L., Capehart, T. W., Fuller, T. J. & Jorne, J. Investigation of low-temperature proton transport in Nafion using direct current conductivity and DSC. J. Electrochem. Soc. 153, A2351–A2362 (2006).

    Article  CAS  Google Scholar 

  49. Tasaka, M., Suzuki, S., Ogawa, Y. & Kamaya, M. Freezing and nonfreezing water in charged membranes. J. Membr. Sci. 38, 175–183 (1988).

    Article  CAS  Google Scholar 

  50. Cui, S. et al. A molecular dynamics study of a Nafion polyelectrolyte membrane and the aqueous phase structure for proton transport. J. Phys. Chem. B 111, 2208–2218 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences (Materials Chemistry and Biomolecular Materials Program) under Contract No. DE-AC02-07CH11358.

Author information

Authors and Affiliations

Authors

Contributions

K.S.R. ran the simulations and wrote the paper. Q.C. identified various Nafion models in the literature and reprocessed literature data for Fig. 1.

Corresponding author

Correspondence to Klaus Schmidt-Rohr.

Supplementary information

Supplementary Information

Supplementary information and figures S1-S8 (PDF 1332 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt-Rohr, K., Chen, Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nature Mater 7, 75–83 (2008). https://doi.org/10.1038/nmat2074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing