Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional photonic metamaterials at optical frequencies

Abstract

Metamaterials are artificially structured media with unit cells much smaller than the wavelength of light. They have proved to possess novel electromagnetic properties, such as negative magnetic permeability and negative refractive index1,2,3. This enables applications such as negative refraction4, superlensing5 and invisibility cloaking6. Although the physical properties can already be demonstrated in two-dimensional (2D) metamaterials, the practical applications require 3D bulk-like structures4,5,6. This prerequisite has been achieved in the gigahertz range for microwave applications owing to the ease of fabrication by simply stacking printed circuit boards4,6. In the optical domain, such an elegant method has been the missing building block towards the realization of 3D metamaterials. Here, we present a general method to manufacture 3D optical (infrared) metamaterials using a layer-by-layer technique7,8,9. Specifically, we introduce a fabrication process involving planarization, lateral alignment and stacking. We demonstrate stacked metamaterials, investigate the interaction between adjacent stacked layers and analyse the optical properties of stacked metamaterials with respect to an increasing number of layers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure geometry and fabrication procedures.
Figure 2: Field-emission scanning electron microscopy images of the four-layer SRR structure.
Figure 3: Experimental measurement and numerical simulation for the four-layer SRR structure.
Figure 4: Optical properties as a function of spacer layer thickness for the four-layer SRR structure.
Figure 5: Evolution of optical spectra with the number of SRR layers.

Similar content being viewed by others

References

  1. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  CAS  Google Scholar 

  2. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

    Article  CAS  Google Scholar 

  3. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  CAS  Google Scholar 

  4. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  CAS  Google Scholar 

  5. Wiltshire, M. C. K., Pendry, J. B. & Hajnal, J. V. Sub-wavelength imaging at radio frequency. J. Phys. Condens. Matter 18, L315–L321 (2006).

    Article  CAS  Google Scholar 

  6. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  CAS  Google Scholar 

  7. Qi, M. H. et al. A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004).

    Article  CAS  Google Scholar 

  8. Subramania, G. & Lin, S. Y. Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography. Appl. Phys. Lett. 85, 5037–5039 (2004).

    Article  CAS  Google Scholar 

  9. Chang, A. S. P. et al. Visible three-dimensional metallic photonic crystal with non-localized propagating modes beyond waveguide cutoff. Opt. Express 15, 8428–8437 (2007).

    Article  CAS  Google Scholar 

  10. Zhang, S. et al. Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks. Opt. Express 14, 6778–6787 (2006).

    Article  Google Scholar 

  11. Dolling, R., Wegener, M. & Linden, S. Realization of a three-functional-layer negative-index photonic metamaterial. Opt. Lett. 32, 551–553 (2007).

    Article  CAS  Google Scholar 

  12. Smith, D. R., Schultz, S., Markos, P. & Soukoulis, C. M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002).

    Article  Google Scholar 

  13. Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    Article  CAS  Google Scholar 

  14. Wang, H., Brandl, D. W., Le, F., Nordlander, P. & Halas, N. J. Nanorice: A hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006).

    Article  CAS  Google Scholar 

  15. Liu, N. et al. Plasmon hybridization in stacked cut-wire metamaterials. Adv. Mater. 19, 3628–3632 (2007).

    Article  CAS  Google Scholar 

  16. Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004).

    Article  CAS  Google Scholar 

  17. Linden, S. et al. Magnetic response of metamaterials at 100 Terahertz. Science 306, 1351–1353 (2004).

    Article  CAS  Google Scholar 

  18. Dolling, G. et al. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Opt. Lett. 30, 3198–3200 (2005).

    Article  CAS  Google Scholar 

  19. Shevets, G. & Urzhumov, Y. A. Negative index meta-materials based on two-dimensional metallic structures. J. Opt. A 8, S122–S130 (2006).

    Article  Google Scholar 

  20. Rockstuhl, C. et al. Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys. B 84, 219–227 (2006).

    Article  CAS  Google Scholar 

  21. Schurig, D., Mock, J. J. & Smith, D. R. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006).

    Article  Google Scholar 

  22. Liu, Y., Fang, N., Wu, D., Sun, C. & Zhang, X. Symmetric and antisymmetric modes of electromagnetic resonators. Appl. Phys. A 87, 171–174 (2007).

    Article  CAS  Google Scholar 

  23. Pendry, J. B. A Chiral route to negative refraction. Science 306, 1353–1355 (2004).

    Article  CAS  Google Scholar 

  24. Decker, M., Klein, M., Wegener, M. & Linden, S. Circular dichroism of planar chiral magnetic metamaterials. Opt. Lett. 32, 856–858 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Dressel, T. Zentgraf and T. P. Meyrath for useful discussions and comments. We are grateful to M. Hirscher and U. Eigenthaler at the Max-Planck-Institut für Metallforschung and R. Schmidt at Hitachi High-Technologies Europe GmbH for their electron microscopy support. We acknowledge H. Graebeldinger, E. Koroknay and M. Ubl for technical assistance. This work was financially supported by Deutsche Forschungsgemeinschaft (SPP1113 and FOR557), by Landesstiftung BW, and by BMBF (13N9155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Giessen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Guo, H., Fu, L. et al. Three-dimensional photonic metamaterials at optical frequencies. Nature Mater 7, 31–37 (2008). https://doi.org/10.1038/nmat2072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing