Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A prion protein epitope selective for the pathologically misfolded conformation

Abstract

Conformational conversion of proteins in disease is likely to be accompanied by molecular surface exposure of previously sequestered amino-acid side chains. We found that induction of β-sheet structures in recombinant prion proteins is associated with increased solvent accessibility of tyrosine. Antibodies directed against the prion protein repeat motif, tyrosine-tyrosine-arginine, recognize the pathological isoform of the prion protein but not the normal cellular isoform, as assessed by immunoprecipitation, plate capture immunoassay and flow cytometry. Antibody binding to the pathological epitope is saturable and specific, and can be created in vitro by partial denaturation of normal brain prion protein. Conformation-selective exposure of Tyr-Tyr-Arg provides a probe for the distribution and structure of pathologically misfolded prion protein, and may lead to new diagnostics and therapeutics for prion diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conformational changes in PrP are associated with solvent exposure of tyrosine side chains.
Figure 2: Tyr-Tyr-Arg antibodies selectively recognize PrPSc.
Figure 3: Characterization of PrPSc-selective antibodies.
Figure 4: Tyr-Tyr-Arg antibodies detect PrPSc in diagnostic platforms and tissues.

Similar content being viewed by others

References

  1. Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Will, R.G. et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921–925 (1996).

    Article  CAS  Google Scholar 

  3. Coulthart, M.B. & Cashman, N.R. Variant Creutzfeldt-Jakob disease: a summary of current scientific knowledge in relation to public health. Can. Med. Assoc. J. 165, 51–58 (2001).

    CAS  Google Scholar 

  4. Bolton, D.C., McKinley M.P. & Prusiner S.B. Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311 (1982).

    Article  CAS  Google Scholar 

  5. Pan, K.-M. et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90, 10962–10966 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Pergami, P., Jaffe, H. & Safar, J. Semipreparative chromatographic method to purify the normal cellular isoform of the prion protein in nondenatured form. Anal. Biochem. 236, 63–73 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Korth, C. et al. Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature 390, 74–77 (1997).

    Article  CAS  Google Scholar 

  8. Fischer, M.B., Roeckl, C., Parizek, P., Schwarz, H.P. & Aguzzi, A. Binding of disease-associated prion protein to plasminogen. Nature 408, 479–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Heppner, F.L. et al. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science 294, 178–182 (2001).

    Article  CAS  Google Scholar 

  10. Swietnicki, W., Petersen, R., Gambetti, P. & Surewicz, W.K. pH-dependent stability and conformation of the recombinant human prion protein PrP(90-231). J. Biol. Chem. 272, 27517–27520 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Hornemann, S. & Glockshuber, R. A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH. Proc. Natl. Acad. Sci. USA 95, 6010–6014 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Jackson, G.S. et al. Reversible conversion of monomeric human prion protein between native and fibrillogenic conformations. Science 283, 1935–1937 (1999).

    Article  CAS  Google Scholar 

  13. Cioni, P. Oxygen and acrylamide quenching of protein phosphorescence: correlation with protein dynamics. Biophys. Chem. 87, 15–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Riek, R. et al. NMR structure of the mouse prion protein domain PrP(121-321). Nature 382, 180–182 (1996).

    Article  CAS  Google Scholar 

  15. Liu, H. et al. Solution structure of Syrian hamster prion protein recombinant PrP(90-231). Biochemistry 38, 5362–5377 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Zahn, R. et al. NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA 97, 145–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Tang, L., Sampson, C., Dreitz, M.J. & McCall, C. Cloning and characterization of cDNAs encoding four different canine immunoglobulin gamma chains. Vet. Immunol. Immunopathol. 80, 259–270 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Sela, M., Mozes, E., Zisman, E., Muszkat, K.A. & Schechter, B. A tale of two peptides, TyrTyrGluGlu and TyrGluTyrGlu, and their diverse immune behaviour. Behring Inst. Mitt. 91, 54–66 (1992).

    CAS  Google Scholar 

  19. Zou, W-Q. & Cashman N.R. Acidic pH and detergents enhance in vitro conversion of human brain PrPC to a PrPSc-like form. J. Biol. Chem. 277, 43942–43947 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Rubenstein, R. et al. Scrapie-infected spleens: analysis of infectivity, scrapie-associated fibrils, and protease-resistant proteins. J. Infect. Dis. 164, 29–35 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Race, R.E. & Ernst, D. Detection of proteinase K-resistant prion protein and infectivity in mouse spleen by 2 weeks after scrapie agent inoculation. J. Gen. Virol. 73, 3319–3323 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Tatzelt, J., Groth, D.F., Torchia, M., Prusiner, S.B. & DeArmond, S.J. Kinetics of prion protein accumulation in the CNS of mice with experimental scrapie. J. Neuropathol. Exp. Neurol. 58, 1244–1249 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Lezmi, S., Bencsik, A. & Baron, T. CNA42 monoclonal antibody identifies FDC as PrPsc accumulating cells in the spleen of scrapie affected sheep. Vet. Immunol. Immunopathol. 82, 1–8 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Hill, A.F. et al. Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 353, 183–189 (1999).

    Article  CAS  Google Scholar 

  25. Mabbot, N.A. & Bruce M.E. The immunobiology of TSE diseases. J. Gen. Virol. 82, 2307–2318 (2001).

    Article  Google Scholar 

  26. Safar, J.G. et al. Measuring prions causing bovine spongiform encephalopathy or chronic wasting disease by immunoassays and transgenic mice. Nat. Biotechnol. 20, 1147–1150 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Safar, J.G. et al. Eight prion strains have PrP(Sc) molecules with different conformations. Nat. Med. 4, 1157–1165 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Hill A.F. et al. Species-barrier-independent prion replication in apparently resistant species. Proc. Natl. Acad. Sci. USA 97 10248–10253 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Horiuchi M., Priola S.A., Chabry J. & Caughey B. Interactions between heterologous forms of prion protein:binding, inhibition of conversion, and species barriers. Proc. Natl Acad. Sci. USA 97, 5836–5841 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Aguzzi A. & Weissmann C. Prion research: the next frontiers. Nature 389, 795–798 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Szakal, A.K. & Tew, J.G. Follicular dendritic cells: B-cell proliferation and maturation. Cancer Res. 52, 5554s–5556s (1992).

    CAS  PubMed  Google Scholar 

  32. Klein, M.A. et al. Complement facilitates early prion pathogenesis. Nat. Med. 7, 488–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Mabbott, N.A. et al. Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nat. Med. 7, 485–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Klein, M.A. et al. A crucial role for B cells in neuroinvasive scrapie. Nature 390, 687–690 (1997).

    Article  CAS  Google Scholar 

  35. Gajdusek, D.C. Unconventional viruses causing subacute spongiform encephalopathies. in Virology (ed. Fields, B.N.) 1516–1557 (Raven Press, New York, 1986).

  36. Enari, M., Flechsig, E. & Weissmann, C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl. Acad. Sci. USA 98, 9295–9299 (2001).

    Article  CAS  Google Scholar 

  37. Peretz, D. et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743 (2001).

    Article  CAS  Google Scholar 

  38. Mouillet-Richard, S. et al. Signal transduction through prion protein. Science 289, 1925–1928 (2000).

    Article  CAS  Google Scholar 

  39. Cashman, N.R. et al. Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell 61, 185–192 (1990).

    Article  CAS  Google Scholar 

  40. Bendheim, P.E. et al. Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42, 149–156 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. White, A.R. et al. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422, 80–83 (2003).

    Article  CAS  Google Scholar 

  42. Wille, H. et al. Structural studies of the scrapie prion protein by electron crystallography. Proc. Natl. Acad. Sci. USA 99, 3563–3568 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Peretz, D. et al. A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J. Mol. Biol. 273, 614–622 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Safar, J., Roller, P.P., Gajdusek, D.C. & Gibbs, C.J. Jr. Scrapie amyloid (prion) protein has the conformational characteristics of an aggregated molten globule folding intermediate. Biochemistry 33, 8375–8383 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Szakal, A.K., Gieringer, R.L., Kosco, M.H & Tew J.G. Isolated follicular dendritic cells: cytochemical antigen localization, Nomarski, SEM, and TEM morphology. J. Immunol. 134, 1349–1359 (1985).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Aguzzi, C. Bergeron, R. Jackman, R. Carp, B. Oesch, R. Rohwer, R. Rubinstein and M. J. Schmerr for provision of infected material and facilities; K. Qin and D. Westaway for recombinant mouse PrP; B. Bartol, P. Cunningham, P. Cecchetti, B. O'Brien-Graf, C. Quan and E. Thibaudeau for expert technical assistance; D. Chelsky and J. Griffin for critical reading of the manuscript; and C. Desjardins and L. Segal for their encouragement and support of this work. N.R.C. is the Jeno and Ilona Diener Chair of Neurodegenerative Diseases at the University of Toronto and Sunnybrook & Women's College Health Sciences Center, and is a Founder and Scientific Advisor of Caprion Pharmaceuticals. This work was supported by Caprion Pharmaceuticals, the Canadian Institutes of Health Research (Institute of Infection and Immunity) and McDonald's Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil R Cashman.

Ethics declarations

Competing interests

The manuscript represents university-industry collaboration between scientists at the University of Toronto and two biotechnology companies (Caprion Pharmaceuticals of Montreal, Canada and Idexx Laboratories of Portland, Maine). N.R.C. is a professor at the University of Toronto, as well as founder and scientific advisor of Caprion Pharmaceuticals, from which he has derived partial salary and laboratory operating grants. The commercial aspects of this discovery are being developed under license from Caprion to Idexx and Ortho Clinical Diagnostics.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paramithiotis, E., Pinard, M., Lawton, T. et al. A prion protein epitope selective for the pathologically misfolded conformation. Nat Med 9, 893–899 (2003). https://doi.org/10.1038/nm883

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm883

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing