Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppression of immunoglobulin E–mediated allergic responses by regulator of G protein signaling 13

Abstract

Mast cells elicit allergic responses through degranulation and release of proinflammatory mediators after antigen crosslinking of the immunoglobulin E receptor FcεRI. Proteins of the 'regulator of G protein signaling' (RGS) family negatively control signaling mediated by G protein–coupled receptors through GTPase-accelerating protein activity. Here we show that RGS13 inhibited allergic responses by physically interacting with the regulatory p85α subunit of phosphatidylinositol-3-OH kinase in mast cells and disrupting its association with an FcεRI-activated scaffolding complex. Rgs13−/− mice had enhanced immunoglobulin E–mediated mast cell degranulation and anaphylaxis. Thus, RGS13 inhibits the assembly of immune receptor–induced signalosomes in mast cells. Abnormal RGS13 expression or function may contribute to disorders of amplified mast cell activity, such as idiopathic anaphylaxis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of RGS13 by BMMCs.
Figure 2: RGS13 inhibits IgE-dependent mast cell degranulation independently of GAP activity.
Figure 3: Enhanced passive cutaneous anaphylaxis in Rgs13−/− mice.
Figure 4: RGS13 interacts with the regulatory p85α subunit of PI(3)K.
Figure 5: Rgs13−/− mast cells have enhanced antigen-elicited PI(3)K activity and 'downstream' signaling events.
Figure 6: RGS13 expression in wild-type BMMCs inhibits antigen-induced Ca2+ flux and Akt activation.
Figure 7: Mechanism of the inhibition of antigen-induced PI(3)K activity by RGS13 in mast cells.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Metz, M. & Maurer, M. Mast cells–key effector cells in immune responses. Trends Immunol. 28, 234–241 (2007).

    Article  CAS  Google Scholar 

  2. Ra, C., Jouvin, M.H. & Kinet, J.P. Complete structure of the mouse mast cell receptor for IgE (FcεRI) and surface expression of chimeric receptors (rat-mouse-human) on transfected cells. J. Biol. Chem. 264, 15323–15327 (1989).

    CAS  PubMed  Google Scholar 

  3. Fukao, T. et al. Selective loss of gastrointestinal mast cells and impaired immunity in PI3K-deficient mice. Nat. Immunol. 3, 295–304 (2002).

    Article  CAS  Google Scholar 

  4. Ali, K. et al. Essential role for the p110δ phosphoinositide 3-kinase in the allergic response. Nature 431, 1007–1011 (2004).

    Article  CAS  Google Scholar 

  5. Gilfillan, A.M. & Tkaczyk, C. Integrated signalling pathways for mast-cell activation. Nat. Rev. Immunol. 6, 218–230 (2006).

    Article  CAS  Google Scholar 

  6. Nguyen, M. et al. Receptors and signaling mechanisms required for prostaglandin E2-mediated regulation of mast cell degranulation and IL-6 production. J. Immunol. 169, 4586–4593 (2002).

    Article  CAS  Google Scholar 

  7. Zhong, H. et al. Activation of murine lung mast cells by the adenosine A3 receptor. J. Immunol. 171, 338–345 (2003).

    Article  CAS  Google Scholar 

  8. Olivera, A. & Rivera, J. Sphingolipids and the balancing of immune cell function: lessons from the mast cell. J. Immunol. 174, 1153–1158 (2005).

    Article  CAS  Google Scholar 

  9. Jolly, P.S. et al. Transactivation of sphingosine-1-phosphate receptors by FcεRI triggering is required for normal mast cell degranulation and chemotaxis. J. Exp. Med. 199, 959–970 (2004).

    Article  CAS  Google Scholar 

  10. Gilman, A.G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649 (1987).

    Article  CAS  Google Scholar 

  11. Willars, G.B. Mammalian RGS proteins: multifunctional regulators of cellular signalling. Semin. Cell Dev. Biol. 17, 363–376 (2006).

    Article  CAS  Google Scholar 

  12. Druey, K.M. Bridging with GAPs: receptor communication through RGS proteins. Sci. STKE [online] 104, RE14 (2001) (doi:10.1126/stke.2001.1104.re1114).

    Article  Google Scholar 

  13. Hernandez-Hansen, V. et al. Increased expression of genes linked to FcεRI Signaling and to cytokine and chemokine production in Lyn-deficient mast cells. J. Immunol. 175, 7880–7888 (2005).

    Article  CAS  Google Scholar 

  14. Taymans, J.M., Leysen, J.E. & Langlois, X. Striatal gene expression of RGS2 and RGS4 is specifically mediated by dopamine D1 and D2 receptors: clues for RGS2 and RGS4 functions. J. Neurochem. 84, 1118–1127 (2003).

    Article  CAS  Google Scholar 

  15. Laffargue, M. et al. Phosphoinositide 3-kinase γ is an essential amplifier of mast cell function. Immunity 16, 441–451 (2002).

    Article  CAS  Google Scholar 

  16. Heximer, S.P., Watson, N., Linder, M.E., Blumer, K.J. & Hepler, J.R. RGS2/G0S8 is a selective inhibitor of Gqα function. Proc. Natl. Acad. Sci. USA 94, 14389–14393 (1997).

    Article  CAS  Google Scholar 

  17. Fukao, T., Terauchi, Y., Kadowaki, T. & Koyasu, S. Role of phosphoinositide 3-kinase signaling in mast cells: new insights from knockout mouse studies. J. Mol. Med. 81, 524–535 (2003).

    Article  CAS  Google Scholar 

  18. Yu, M., Lowell, C.A., Neel, B.G. & Gu, H. Scaffolding adapter Grb2-associated binder 2 requires Syk to transmit signals from FcεRI. J. Immunol. 176, 2421–2429 (2006).

    Article  CAS  Google Scholar 

  19. Gu, H. et al. Essential role for Gab2 in the allergic response. Nature 412, 186–190 (2001).

    Article  CAS  Google Scholar 

  20. Yamanashi, Y. et al. Activation of Src-like protein-tyrosine kinase Lyn and its association with phosphatidylinositol 3-kinase upon B-cell antigen receptor-mediated signaling. Proc. Natl. Acad. Sci. USA 89, 1118–1122 (1992).

    Article  CAS  Google Scholar 

  21. Cuevas, B.D. et al. Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J. Biol. Chem. 276, 27455–27461 (2001).

    Article  CAS  Google Scholar 

  22. Zhu, M., Rhee, I., Liu, Y. & Zhang, W. Negative regulation of FcεRI-mediated signaling and mast cell function by the adaptor protein LAX. J. Biol. Chem. 281, 18408–18413 (2006).

    Article  CAS  Google Scholar 

  23. Andrade, M.V., Hiragun, T. & Beaven, M.A. Dexamethasone suppresses antigen-induced activation of phosphatidylinositol 3-kinase and downstream responses in mast cells. J. Immunol. 172, 7254–7262 (2004).

    Article  CAS  Google Scholar 

  24. Zhang, J., Berenstein, E.H., Evans, R.L. & Siraganian, R.P. Transfection of Syk protein tyrosine kinase reconstitutes high affinity IgE receptor-mediated degranulation in a Syk-negative variant of rat basophilic leukemia RBL-2H3 cells. J. Exp. Med. 184, 71–79 (1996).

    Article  CAS  Google Scholar 

  25. Reischl, I.G., Coward, W.R. & Church, M.K. Molecular consequences of human mast cell activation following immunoglobulin E-high-affinity immunoglobulin E receptor (IgE-FcεRI) interaction. Biochem. Pharmacol. 58, 1841–1850 (1999).

    Article  CAS  Google Scholar 

  26. Vanhaesebroeck, B., Ali, K., Bilancio, A., Geering, B. & Foukas, L.C. Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem. Sci. 30, 194–204 (2005).

    Article  CAS  Google Scholar 

  27. Nechushtan, H., Leitges, M., Cohen, C., Kay, G. & Razin, E. Inhibition of degranulation and interleukin-6 production in mast cells derived from mice deficient in protein kinase Cβ. Blood 95, 1752–1757 (2000).

    CAS  PubMed  Google Scholar 

  28. Leitges, M. et al. Protein kinase C-δ is a negative regulator of antigen-induced mast cell degranulation. Mol. Cell. Biol. 22, 3970–3980 (2002).

    Article  CAS  Google Scholar 

  29. Zhang, C., Hirasawa, N. & Beaven, M.A. Antigen activation of mitogen-activated protein kinase in mast cells through protein kinase C-dependent and independent pathways. J. Immunol. 158, 4968–4975 (1997).

    CAS  PubMed  Google Scholar 

  30. Olenchock, B.A. et al. Impaired degranulation but enhanced cytokine production after FcεRI stimulation of diacylglycerol kinase ζ-deficient mast cells. J. Exp. Med. 203, 1471–1480 (2006).

    Article  CAS  Google Scholar 

  31. Kitaura, J. et al. Akt-dependent cytokine production in mast cells. J. Exp. Med. 192, 729–740 (2000).

    Article  CAS  Google Scholar 

  32. Dong, B., Valencia, C.A. & Liu, R. Ca2+/calmodulin directly interacts with the pleckstrin homology domain of AKT1. J. Biol. Chem. 282, 25131–25140 (2007).

    Article  CAS  Google Scholar 

  33. Popov, S.G., Krishna, U.M., Falck, J.R. & Wilkie, T.M. Ca2+/Calmodulin reverses phosphatidylinositol 3,4, 5-trisphosphate-dependent inhibition of regulators of G protein-signaling GTPase-activating protein activity. J. Biol. Chem. 275, 18962–18968 (2000).

    Article  CAS  Google Scholar 

  34. Hollinger, S. & Hepler, J.R. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol. Rev. 54, 527–559 (2002).

    Article  CAS  Google Scholar 

  35. Lu-Kuo, J.M., Fruman, D.A., Joyal, D.M., Cantley, L.C. & Katz, H.R. Impaired kit- but not FcεRI-initiated mast cell activation in the absence of phosphoinositide 3-kinase p85α gene products. J. Biol. Chem. 275, 6022–6029 (2000).

    Article  CAS  Google Scholar 

  36. Bernstein, L.S., Grillo, A.A., Loranger, S.S. & Linder, M.E. RGS4 binds to membranes through an amphipathic α-helix. J. Biol. Chem. 275, 18520–18526 (2000).

    Article  CAS  Google Scholar 

  37. Tesmer, J.J., Berman, D.M., Gilman, A.G. & Sprang, S.R. Structure of RGS4 bound to AlF4--activated Giα1: stabilization of the transition state for GTP hydrolysis. Cell 89, 251–261 (1997).

    Article  CAS  Google Scholar 

  38. Heximer, S.P. & Blumer, K.J. RGS proteins: Swiss army knives in seven-transmembrane domain receptor signaling networks. Sci. STKE [online] 370, pe2 (2007)(doi:10.1126/stke.3702007pe3702002).

    Article  Google Scholar 

  39. Wang, X. et al. Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors. Nat. Cell Biol. 7, 405–411 (2005).

    Article  CAS  Google Scholar 

  40. Liu, W. et al. Adrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin. Proc. Natl. Acad. Sci. USA 103, 18338–18343 (2006).

    Article  CAS  Google Scholar 

  41. Hague, C. et al. Selective inhibition of α1A-adrenergic receptor signaling by RGS2 association with the receptor third intracellular loop. J. Biol. Chem. 280, 27289–27295 (2005).

    Article  CAS  Google Scholar 

  42. Han, S.B. et al. Rgs1 and Gnai2 regulate the entrance of B lymphocytes into lymph nodes and B cell motility within lymph node follicles. Immunity 22, 343–354 (2005).

    Article  CAS  Google Scholar 

  43. Shi, G.X., Harrison, K., Wilson, G.L., Moratz, C. & Kehrl, J.H. RGS13 regulates germinal center B lymphocytes responsiveness to CXC chemokine ligand (CXCL)12 and CXCL13. J. Immunol. 169, 2507–2515 (2002).

    Article  CAS  Google Scholar 

  44. Estes, J.D. et al. Follicular dendritic cell regulation of CXCR4-mediated germinal center CD4 T cell migration. J. Immunol. 173, 6169–6178 (2004).

    Article  CAS  Google Scholar 

  45. Beadling, C., Druey, K.M., Richter, G., Kehrl, J.H. & Smith, K.A. Regulators of G protein signaling exhibit distinct patterns of gene expression and target G protein specificity in human lymphocytes. J. Immunol. 162, 2677–2682 (1999).

    CAS  PubMed  Google Scholar 

  46. Youssef, L.A. et al. Histamine release from the basophils of control and asthmatic subjects and a comparison of gene expression between “releaser” and “nonreleaser” basophils. J. Immunol. 178, 4584–4594 (2007).

    Article  CAS  Google Scholar 

  47. Saitoh, S. et al. LAT is essential for FcεRI-mediated mast cell activation. Immunity 12, 525–535 (2000).

    Article  CAS  Google Scholar 

  48. Dombrowicz, D., Flamand, V., Brigman, K.K., Koller, B.H. & Kinet, J.P. Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor α chain gene. Cell 75, 969–976 (1993).

    Article  CAS  Google Scholar 

  49. Manetz, T.S. et al. Vav1 regulates phospholipase cγ activation and calcium responses in mast cells. Mol. Cell. Biol. 21, 3763–3774 (2001).

    Article  CAS  Google Scholar 

  50. Nagahara, H. et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med. 4, 1449–1452 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Dowdy (University of California, San Diego, School of Medicine) and J.S. Gutkind (National Institute of Dental and Craniofacial Research, National Institutes of Health) for plasmids; S. Iwaki and A. Gilfillan for reagents, protocols, discussions and critical review of the manuscript; J. Kehrl (National Institute of Allergy and Infectious Diseases, National Institutes of Health) for anti-RGS13 and D. Metcalfe for support.

Author information

Authors and Affiliations

Authors

Contributions

G.B., Z.X. and K.D. did experiments, analyzed data and wrote the paper; and S.R. and K.H.N. did experiments and analyzed data.

Corresponding author

Correspondence to Kirk M Druey.

Ethics declarations

Competing interests

K.H.N. and S.R. were employees of USB Pharma when the microarray data were collected.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 686 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, G., Xie, Z., Rao, S. et al. Suppression of immunoglobulin E–mediated allergic responses by regulator of G protein signaling 13. Nat Immunol 9, 73–80 (2008). https://doi.org/10.1038/ni1533

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1533

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing