Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

B cell–specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers

Abstract

Activation-induced cytidine deaminase (AID) is essential for the generation of antibody memory but also targets oncogenes, among other genes. We investigated the transcriptional regulation of Aicda (which encodes AID) in class switch–inducible CH12F3-2 cells and found that Aicda regulation involved derepression by several layers of positive regulatory elements in addition to the 5′ promoter region. The 5′ upstream region contained functional motifs for the response to signaling by cytokines, the ligand for the costimulatory molecule CD40 or stimuli that activated the transcription factor NF-κB. The first intron contained functional binding elements for the ubiquitous silencers c-Myb and E2f and for the B cell–specific activator Pax5 and E-box-binding proteins. Our results show that Aicda is regulated by the balance between B cell–specific and stimulation-responsive elements and ubiquitous silencers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General characterization of Aicda regions 1–4 by luciferase reporter assay.
Figure 2: Region 2 contains both enhancer and suppressor elements.
Figure 3: Analysis of CIT-responsive elements in region 4.
Figure 4: Elements in region 4 that are responsive to the CIT stimulation.
Figure 5: Roles of the Pax5 motif and the E-box in region 2 in B cells.
Figure 6: ChIP assay of the in vivo binding of transcription factors.
Figure 7: Time-course analysis of the expression of candidate transcription factors that may interact with Aicda regulatory regions.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  Google Scholar 

  2. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  Google Scholar 

  3. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  Google Scholar 

  4. Stavnezer, J., Guikema, J.E. & Schrader, C.E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292 (2008).

    Article  CAS  Google Scholar 

  5. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).

    Article  CAS  Google Scholar 

  6. Doi, T. et al. The C-terminal region of activation-induced cytidine deaminase is responsible for a recombination function other than DNA cleavage in class switch recombination. Proc. Natl. Acad. Sci. USA 106, 2758–2763 (2009).

    Article  CAS  Google Scholar 

  7. Nagaoka, H., Muramatsu, M., Yamamura, N., Kinoshita, K. & Honjo, T. Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Smu region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J. Exp. Med. 195, 529–534 (2002).

    Article  CAS  Google Scholar 

  8. Begum, N.A. et al. De novo protein synthesis is required for activation-induced cytidine deaminase-dependent DNA cleavage in immunoglobulin class switch recombination. Proc. Natl. Acad. Sci. USA 101, 13003–13007 (2004).

    Article  CAS  Google Scholar 

  9. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  Google Scholar 

  10. Gao, N., Dang, T. & Yuan, D. IFN-γ-dependent and -independent initiation of switch recombination by NK cells. J. Immunol. 167, 2011–2018 (2001).

    Article  CAS  Google Scholar 

  11. Okazaki, I.M., Kotani, A. & Honjo, T. Role of AID in tumorigenesis. Adv. Immunol. 94, 245–273 (2007).

    Article  CAS  Google Scholar 

  12. Ramiro, A.R. et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118, 431–438 (2004).

    Article  CAS  Google Scholar 

  13. Kotani, A. et al. Activation-induced cytidine deaminase (AID) promotes B cell lymphomagenesis in Emu-cmyc transgenic mice. Proc. Natl. Acad. Sci. USA 104, 1616–1620 (2007).

    Article  Google Scholar 

  14. Kovalchuk, A.L. et al. AID-deficient Bcl-xL transgenic mice develop delayed atypical plasma cell tumors with unusual Ig/Myc chromosomal rearrangements. J. Exp. Med. 204, 2989–3001 (2007).

    Article  CAS  Google Scholar 

  15. Pasqualucci, L. et al. AID is required for germinal center-derived lymphomagenesis. Nat. Genet. 40, 108–112 (2008).

    Article  CAS  Google Scholar 

  16. Takizawa, M. et al. AID expression levels determine the extent of cMyc oncogenic translocations and the incidence of B cell tumor development. J. Exp. Med. 205, 1949–1957 (2008).

    Article  CAS  Google Scholar 

  17. Feldhahn, N. et al. Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells. J. Exp. Med. 204, 1157–1166 (2007).

    Article  CAS  Google Scholar 

  18. He, B., Raab-Traub, N., Casali, P. & Cerutti, A. EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. J. Immunol. 171, 5215–5224 (2003).

    Article  CAS  Google Scholar 

  19. Machida, K. et al. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc. Natl. Acad. Sci. USA 101, 4262–4267 (2004).

    Article  CAS  Google Scholar 

  20. Matsumoto, Y. et al. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat. Med. 13, 470–476 (2007).

    Article  CAS  Google Scholar 

  21. Endo, Y. et al. Expression of activation-induced cytidine deaminase in human hepatocytes via NF-κB signaling. Oncogene 26, 5587–5595 (2007).

    Article  CAS  Google Scholar 

  22. Morisawa, T. et al. Organ-specific profiles of genetic changes in cancers caused by activation-induced cytidine deaminase expression. Int. J. Cancer 123, 2735–2740 (2008).

    Article  CAS  Google Scholar 

  23. Okazaki, I.M. et al. Constitutive expression of AID leads to tumorigenesis. J. Exp. Med. 197, 1173–1181 (2003).

    Article  CAS  Google Scholar 

  24. Rucci, F. et al. Tissue-specific sensitivity to AID expression in transgenic mouse models. Gene 377, 150–158 (2006).

    Article  CAS  Google Scholar 

  25. Yadav, A. et al. Identification of a ubiquitously active promoter of the murine activation-induced cytidine deaminase (AICDA) gene. Mol. Immunol. 43, 529–541 (2006).

    Article  CAS  Google Scholar 

  26. Sayegh, C.E., Quong, M.W., Agata, Y. & Murre, C. E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nat. Immunol. 4, 586–593 (2003).

    Article  CAS  Google Scholar 

  27. Gonda, H. et al. The balance between Pax5 and Id2 activities is the key to AID gene expression. J. Exp. Med. 198, 1427–1437 (2003).

    Article  CAS  Google Scholar 

  28. Dedeoglu, F., Horwitz, B., Chaudhuri, J., Alt, F.W. & Geha, R.S. Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFκB. Int. Immunol. 16, 395–404 (2004).

    Article  CAS  Google Scholar 

  29. Nakamura, M. et al. High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. Int. Immunol. 8, 193–201 (1996).

    Article  CAS  Google Scholar 

  30. Crouch, E.E. et al. Regulation of AID expression in the immune response. J. Exp. Med. 204, 1145–1156 (2007).

    Article  CAS  Google Scholar 

  31. Park, S.R. et al. HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation. Nat. Immunol. 10, 540–550 (2009).

    Article  CAS  Google Scholar 

  32. Suske, G. The Sp-family of transcription factors. Gene 238, 291–300 (1999).

    Article  CAS  Google Scholar 

  33. Nagy, S.R. & Denison, M.S. Specificity of nuclear protein binding to a CYP1A1 negative regulatory element. Biochem. Biophys. Res. Commun. 296, 799–805 (2002).

    Article  CAS  Google Scholar 

  34. DeGregori, J. & Johnson, D.G. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr. Mol. Med. 6, 739–748 (2006).

    CAS  PubMed  Google Scholar 

  35. van Dijk, T.B. et al. A composite C/EBP binding site is essential for the activity of the promoter of the IL-3/IL-5/granulocyte-macrophage colony-stimulating factor receptor β c gene. J. Immunol. 163, 2674–2680 (1999).

    CAS  PubMed  Google Scholar 

  36. Mizuguchi, G. et al. c-Myb repression of c-erbB-2 transcription by direct binding to the c-erbB-2 promoter. J. Biol. Chem. 270, 9384–9389 (1995).

    Article  CAS  Google Scholar 

  37. Ganter, B. & Lipsick, J.S. Myb binding sites within the N-ras promoter repress transcription. Oncogene 15, 193–202 (1997).

    Article  CAS  Google Scholar 

  38. Allen, R.D. III, Kim, H.K., Sarafova, S.D. & Siu, G. Negative regulation of CD4 gene expression by a HES-1-c-Myb complex. Mol. Cell. Biol. 21, 3071–3082 (2001).

    Article  CAS  Google Scholar 

  39. Frolov, M.V. & Dyson, N.J. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J. Cell Sci. 117, 2173–2181 (2004).

    Article  CAS  Google Scholar 

  40. Trimarchi, J.M. & Lees, J.A. Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 3, 11–20 (2002).

    Article  CAS  Google Scholar 

  41. Han, J.H. et al. Class switch recombination and somatic hypermutation in early mouse B cells are mediated by B cell and Toll-like receptors. Immunity 27, 64–75 (2007).

    Article  CAS  Google Scholar 

  42. Ueda, Y., Liao, D., Yang, K., Patel, A. & Kelsoe, G. T-independent activation-induced cytidine deaminase expression, class-switch recombination, and antibody production by immature/transitional 1 B cells. J. Immunol. 178, 3593–3601 (2007).

    Article  CAS  Google Scholar 

  43. Gourzi, P., Leonova, T. & Papavasiliou, F.N. Viral induction of AID is independent of the interferon and the Toll-like receptor signaling pathways but requires NF-κB. J. Exp. Med. 204, 259–265 (2007).

    Article  CAS  Google Scholar 

  44. Deb, A., Haque, S.J., Mogensen, T., Silverman, R.H. & Williams, B.R. RNA-dependent protein kinase PKR is required for activation of NF-κB by IFN-γ in a STAT1-independent pathway. J. Immunol. 166, 6170–6180 (2001).

    Article  CAS  Google Scholar 

  45. Park, H.J., So, E.Y. & Lee, C.E. Interferon-gamma-induced factor binding to the interleukin-4-responsive element of CD23b promoter in human tonsillar mononuclear cells: role in transient up-regulation of the interleukin-4-induced CD23b mRNA. Mol. Immunol. 35, 239–247 (1998).

    Article  CAS  Google Scholar 

  46. Schwartz, S. et al. PipMaker–a web server for aligning two genomic DNA sequences. Genome Res. 10, 577–586 (2000).

    Article  CAS  Google Scholar 

  47. Tatusova, T.A. & Madden, T.L. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 174, 247–250 (1999).

    Article  CAS  Google Scholar 

  48. Loots, G.G., Ovcharenko, I., Pachter, L., Dubchak, I. & Rubin, E.M. rVista for comparative sequence-based discovery of functional transcription factor binding sites. Genome Res. 12, 832–839 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank I. Taniuchi for critical comments and Y. Shiraki and T. Kanda for help in the preparation of the manuscript. Supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant-in-Aid for Specially Promoted Research 17002015).

Author information

Authors and Affiliations

Authors

Contributions

T.H.T., T.H. and H.N. designed the study; T.H.T., M.N., K.S. and H.N. did experiments; N.A.B., R.S. and S.F. provided reagents and suggestions and T.H.T., T.H. and H.N. wrote the manuscript.

Corresponding author

Correspondence to Tasuku Honjo.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–5 (PDF 791 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, T., Nakata, M., Suzuki, K. et al. B cell–specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nat Immunol 11, 148–154 (2010). https://doi.org/10.1038/ni.1829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1829

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing