Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Earth’s ionospheric outflow dominated by hidden cold plasma

Abstract

The Earth constantly loses matter, mostly in the form of H+ and O+ ions, through various outflow processes from the upper atmosphere and ionosphere. Most of these ions are cold (below 1 eV in thermal energy), but can still escape and travel farther out along the magnetic field lines into the magnetospheric tail lobes1,2. The outflow has previously been measured close to the Earth3,4,5,6,7. To understand what fraction does not return but instead escapes, the measurements should be conducted at larger geocentric distances. However, at high altitudes the cold ions are normally invisible to spacecraft measurements, because the potential of a sunlit spacecraft exceeds the equivalent energy of the ions8,9. Here we show that cold ions dominate in both flux and density in the distant magnetotail lobes, using a new measurement technique on the Cluster spacecraft10,11. The total loss of cold hydrogen ions from the planet is inferred to be of the order of 1026 s−1, which is larger than the previously observed more energetic outflow12,13. Quantification and insight of the loss processes of the Earth’s atmosphere and ionosphere are also important for understanding the evolution of atmospheres on other celestial bodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Low-energy ion outflows in the magnetosphere.
Figure 2: Cold ions detected by Cluster.
Figure 3: High-altitude outflow properties.

Similar content being viewed by others

References

  1. Moore, T. E. & Horwitz, J. L. Stellar ablation of planetary atmospheres. Rev. Geophys. 45, RG3002 (2007).

    Article  Google Scholar 

  2. Yau, A. W., Abe, T. & Peterson, W. K. The polar wind: Recent observations. J. Atmos. Sol.-Terr. Phys. 69, 1936–1983 (2007).

    Article  Google Scholar 

  3. Abe, T., Yau, A. W., Watanabe, S., Yamada, M. & Sagawa, E. Long-term variation of the polar wind velocity and its implication for the ion acceleration process: Akebono/suprathermal ion mass spectrometer observations. J. Geophys. Res. 109, 9305–9317 (2004).

    Article  Google Scholar 

  4. Cully, C. M., Donovan, E. F., Yau, A. W. & Arkos, G. G. Akebono/Suprathermal Mass Spectrometer observations of low-energy ion outflow: Dependence on magnetic activity and solar wind conditions. J. Geophys. Res. 108, 10.1029/2001JA009200 (2003).

  5. Moore, T. E. et al. High-altitude observations of the polar wind. Science 277, 349–351 (1997).

    Article  Google Scholar 

  6. Su, Y.-J. et al. Polar wind survey with the Thermal Ion Dynamics Experiment/Plasma Source Instrument suite aboard POLAR. J. Geophys. Res. 103, 29305–29337 (1998).

    Article  Google Scholar 

  7. Peterson, W. K., Collin, H. L., Lennartsson, O. W. & Yau, A. W. Quiet time solar illumination effects on the fluxes and characteristic energies of ionospheric outflow. J. Geophys. Res. 111, 11–25 (2006).

    Article  Google Scholar 

  8. Eriksson, A. I. et al. Electric field measurements on Cluster: comparing the double-probe and electron drift techniques. Ann. Geophys. 24, 275–289 (2006).

    Article  Google Scholar 

  9. Pedersen, A. et al. Electron density estimations derived from spacecraft potential measurements on Cluster in tenuous plasma regions. J. Geophys. Res. 113, A07S33 (2008).

    Google Scholar 

  10. Engwall, E. et al. Low-energy (order 10 eV) ion flow in the magnetotail inferred from spacecraft wake observations. Geophys. Res. Lett. 33, 6110–6113 (2006).

    Article  Google Scholar 

  11. Engwall, E. et al. Correction to Low-energy (order 10 eV) ion flow in the magnetotail inferred from spacecraft wake observations. Geophys. Res. Lett. 33, 14102 (2006).

    Article  Google Scholar 

  12. Yau, A. W., Peterson, W. K. & Shelley, E. G. Modeling Magnetospheric Plasma 211–217 (Geophysical Monograph 44, American Geophysical Union, 1988).

    Book  Google Scholar 

  13. Peterson, W. K., Collin, H. L., Yau, A. W. & Lennartsson, O. W. Polar/Toroidal Imaging Mass-Angle Spectrograph observations of suprathermal ion outflow during solar minimum conditions. J. Geophys. Res. 106, 6059–6066 (2001).

    Article  Google Scholar 

  14. Yau, A. W. & André, M. Sources of ion outflow in the high latitude ionosphere. Space Sci. Rev. 80, 1–25 (1997).

    Article  Google Scholar 

  15. Chappell, C. R. et al. The adequacy of the ionospheric source in supplying magnetospheric plasmas. J. Atmos. Sol.-Terr. Phys. 62, 421–436 (2000).

    Article  Google Scholar 

  16. Huddleston, M. M. et al. An examination of the process and magnitude of ionospheric plasma supply to the magnetosphere. J. Geophys. Res. 110, 12202–12230 (2005).

    Article  Google Scholar 

  17. Cully, C. M., Donovan, E. F., Yau, A. W. & Opgenoorth, H. J. Supply of thermal ionospheric ions to the central plasma sheet. J. Geophys. Res. 108, 1092–1099 (2003).

    Google Scholar 

  18. Mukai, T. et al. Geotail observation of cold ion streams in the medium distance magnetotail lobe in the course of a substorm. Geophys. Res. Lett. 21, 1023–1026 (1994).

    Article  Google Scholar 

  19. Hirahara, M. et al. Cold dense ion flows with multiple components observed in the distant tail lobe by Geotail. J. Geophys. Res. 101, 7769–7784 (1996).

    Article  Google Scholar 

  20. Sauvaud, J.-A. et al. Case studies of the dynamics of ionospheric ions in the Earth’s magnetotail. J. Geophys. Res. 109, 10.1029/2003JA009996 (2004).

  21. Liemohn, M. W. et al. Occurrence statistics of cold, streaming ions in the near-Earth magnetotail: Survey of Polar-TIDE observations. J. Geophys. Res. 110, 7211–7226 (2005).

    Article  Google Scholar 

  22. Olsen, R. C. The hidden ion population of the magnetosphere. J. Geophys. Res. 87, 3481–3488 (1982).

    Article  Google Scholar 

  23. Seki, K. et al. Cold ions in the hot plasma sheet of Earth’s magnetotail. Nature 422, 589–591 (2003).

    Article  Google Scholar 

  24. Keika, K. et al. Contribution of charge exchange loss to the storm time ring current decay: IMAGE/HENA observations. J. Geophys. Res. 111, A11S12 (2006).

    Article  Google Scholar 

  25. Lindsay, B. G. & Stebbings, R. F. Charge transfer cross sections for energetic neutral atom data analysis. J. Geophys. Res. 110, 12213–12222 (2005).

    Article  Google Scholar 

  26. Dubinin, E. et al. Structure and dynamics of the solar wind/ionosphere interface on Mars. MEX-ASPERA-3 and MEX-MARSIS observations. Geophys. Res. Lett. 35, L11103 (2008).

    Article  Google Scholar 

  27. Gustafsson, G. et al. The Electric Field and Wave Experiment for the Cluster Mission. Space Sci. Rev. 79, 137–156 (1997).

    Article  Google Scholar 

  28. Paschmann, G. et al. The Electron Drift Instrument for Cluster. Space Sci. Rev. 79, 233–269 (1997).

    Article  Google Scholar 

  29. Engwall, E., Eriksson, A. I. & Forest, J. Wake formation behind positively charged spacecraft in flowing tenuous plasmas. Phys. Plasmas 13, 2904–2913 (2006).

    Article  Google Scholar 

  30. Svenes, K. R., Lybekk, B., Pedersen, A. & Haaland, S. Cluster observations of near-earth magnetospheric lobe plasma densities—a statistical study. Ann. Geophys. 26, 2845–2852 (2008).

    Article  Google Scholar 

  31. Nagai, T. et al. First measurements of supersonic polar wind in the polar magnetosphere. Geophys. Res. Lett. 11, 669–672 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

Magnetic field data from the Cluster FGM instrument (principal investigator E. Lucek) has been used in the analysis.

Author information

Authors and Affiliations

Authors

Contributions

E.E. analysed the data, contributed to method development and had the main responsibility for writing the paper, A.I.E. developed the method and contributed to analysing the data and writing the paper, C.C. contributed to analysing the data and writing the paper, M.A. had the main responsibility for the EFW instrument and contributed to writing the paper, R.T. had the main responsibility for the EDI instrument and R.T. and H.V. provided EDI data and comments on the EDI instrument operation.

Corresponding author

Correspondence to E. Engwall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engwall, E., Eriksson, A., Cully, C. et al. Earth’s ionospheric outflow dominated by hidden cold plasma. Nature Geosci 2, 24–27 (2009). https://doi.org/10.1038/ngeo387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing