Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rise of the central Andean coast by earthquakes straddling the Moho

Abstract

Surface movements during the largest subduction zone earthquakes commonly drown coastlines. Yet, on geological timescales, coastlines above subduction zones uplift. Here I use a morphometric analysis combined with a numerical model of landscape evolution to estimate uplift rates along the central Andean rasa—a low-relief coastal surface bounded by a steep cliff formed by wave erosion. I find that the rasa has experienced steady uplift of 0.13 ± 0.04 mm per year along a stretch of more than 2,000 km in length, during the Quaternary. These long-term uplift rates do not correlate with Global Positioning System (GPS) measurements of interseismic movements over the decadal scale, which implies that permanent uplift is not predominantly accumulated during the interseismic period. Instead, the rate of rasa uplift correlates with slip during earthquakes straddling the crust–mantle transition, the Moho. Such deeper earthquakes with magnitude 7 to 8 that occurred between 1995 and 2012 resulted in decimetres of coastal uplift. Slip during these earthquakes is located below the locked portion of the plate interface, and therefore may translate into permanent deformation of the overlying plate, where it causes uplift of the coastline. Thus, lower parts of the plate boundary are stably segmented over hundreds to millions of years. I suggest the coastline marks the surface expression of the transition between the shallow, locked seismogenic domain and the deeper, conditionally stable domain where modest earthquakes build up topography.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tectonic setting and regional distribution of the central Andean rasa (CAR).
Figure 2: Morphometry of the CAR.
Figure 3: Landscape evolution model simulating coastal erosion and formation of the CAR.
Figure 4: Correlations between the CAR with tectonic and morphometric parameters.
Figure 5: Comparisons between plate-boundary slip during and between earthquakes and CAR uplift.

Similar content being viewed by others

References

  1. Darwin, C., Sowerby, G. B. & Forbes, E. Geological Observations on South America (Smith, Elder and Co., 1846).

    Google Scholar 

  2. Atwater, B. F., Núñez, H. J. & Vita-Finzi, C. Net late Holocene emergence despite earthquake-induced submergence, south-central Chile. Quat. Int. 15, 77–85 (1992).

    Article  Google Scholar 

  3. Briggs, R. W. et al. Persistent elastic behavior above a megathrust rupture patch: Nias island, West Sumatra. J. Geophys. Res. 113, B12406 (2008).

    Article  Google Scholar 

  4. Jara-Muñoz, J., Melnick, D., Brill, D. & Strecker, M. R. Segmentation of the 2010 Maule Chile earthquake rupture from a joint analysis of uplifted marine terraces and seismic-cycle deformation patterns. Quat. Sci. Rev. 113, 171–192 (2015).

    Article  Google Scholar 

  5. Peterson, C. D. & Cruikshank, K. M. Quaternary tectonic deformation, Holocene paleoseismicity, and modern strain in the unusually-wide coupled zone of the Central Cascadia Margin, Washington and Oregon, USA, and British Columbia, Canada. J. Geogr. Geol. 6, 1–33 (March, 2014).

    Article  Google Scholar 

  6. Sawai, Y. et al. Transient uplift after a 17th-century earthquake along the Kuril subduction zone. Science 306, 1918–1920 (2004).

    Article  Google Scholar 

  7. Matsu’Ura, T., Furusawa, A. & Saomoto, H. Long-term and short-term vertical velocity profiles across the forearc in the NE Japan subduction zone. Quat. Res. 71, 227–238 (2009).

    Article  Google Scholar 

  8. Ozawa, S. et al. Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan. J. Geophys. Res. 117, B07404 (2012).

    Article  Google Scholar 

  9. Armijo, R. & Thiele, R. Active faulting in northern Chile: ramp stacking and lateral decoupling along a subduction plate boundary? Earth Planet. Sci. Lett. 98, 40–61 (1990).

    Article  Google Scholar 

  10. Adam, J. & Reuther, C. D. Crustal dynamics and active fault mechanics during subduction erosion. Application of frictional wedge analysis on to the North Chilean Forearc. Tectonophysics 321, 297–325 (2000).

    Article  Google Scholar 

  11. Clift, P. D. & Hartley, A. J. Slow rates of subduction erosion and coastal underplating along the Andean margin of Chile and Peru. Geology 35, 503–506 (2007).

    Article  Google Scholar 

  12. Armijo, R., Lacassin, R., Coudurier-Curveur, A. & Carrizo, D. Coupled tectonic evolution of Andean orogeny and global climate. Earth Sci. Rev. 143, 1–35 (2015).

    Article  Google Scholar 

  13. Allmendinger, R. W. & González, G. Invited review paper: neogene to quaternary tectonics of the coastal Cordillera, northern Chile. Tectonophysics 495, 93–110 (2010).

    Article  Google Scholar 

  14. Baker, A., Allmendinger, R. W., Owen, L. A. & Rech, J. A. Permanent deformation caused by subduction earthquakes in northern Chile. Nature Geosci. 6, 492–496 (2013).

    Article  Google Scholar 

  15. Béjar-Pizarro, M. et al. Andean structural control on interseismic coupling in the North Chile subduction zone. Nature Geosci. 6, 462–467 (2013).

    Article  Google Scholar 

  16. Schurr, B. et al. The 2007 M7.7 Tocopilla northern Chile earthquake sequence: implications for along-strike and downdip rupture segmentation and megathrust frictional behavior. J. Geophys. Res. 117, B05305 (2012).

    Article  Google Scholar 

  17. Oncken, O. et al. Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP’96)). J. Geophys. Res. Solid Earth 108, 2328 (2003).

    Article  Google Scholar 

  18. von Huene, R. & Ranero, C. R. Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile. J. Geophys. Res. Solid Earth 108, 2079 (2003).

    Article  Google Scholar 

  19. Lamb, S. & Davis, P. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425, 792–797 (2003).

    Article  Google Scholar 

  20. Martinod, J. et al. How do subduction processes contribute to forearc Andean uplift? Insights from numerical models. J. Geodyn. http://dx.doi.org/10.1016/j.jog.2015.04.001 (in the press, 2016).

  21. Delouis, B., Philip, H., Dorbath, L. & Cisternas, A. Recent crustal deformation in the Antofagasta region (northern Chile) and the subduction process. Geophys. J. Int. 132, 302–338 (1998).

    Article  Google Scholar 

  22. Ocola, L. Southern Peru coseismic subsidence: 23 June 2001 8.4-Mw earthquake. Adv. Geosci. 14, 79–83 (2008).

    Article  Google Scholar 

  23. Schurr, B. et al. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature 512, 299–302 (2014).

    Article  Google Scholar 

  24. Contreras-Reyes, E., Jara, J., Grevemeyer, I., Ruiz, S. & Carrizo, D. Abrupt change in the dip of the subducting plate beneath north Chile. Nature Geosci. 5, 342–345 (2012).

    Article  Google Scholar 

  25. Paskoff, R. Quaternary of Chile: the state of research. Quat. Res. 8, 2–31 (1977).

    Article  Google Scholar 

  26. Pedoja, K. et al. Coastal staircase sequences reflecting sea-level oscillations and tectonic uplift during the Quaternary and Neogene. Earth Sci. Rev. 132, 13–38 (2014).

    Article  Google Scholar 

  27. Pedoja, K. et al. Relative sea-level fall since the last interglacial stage: are coasts uplifting worldwide? Earth Sci. Rev. 108, 1–15 (2011).

    Article  Google Scholar 

  28. Regard, V. et al. Renewed uplift of the Central Andes Forearc revealed by coastal evolution during the Quaternary. Earth Planet. Sci. Lett. 297, 199–210 (2010).

    Article  Google Scholar 

  29. Quezada, J., Gonzalez, G., Dunai, T., Jensen, A. & Juez-Larre, J. Pleistocene littoral uplift of northern Chile: Ne-21 age of the upper marine terrace of Caldera-Bahia Inglesa area. Rev. Geol. Chil. 34, 81–96 (2007).

    Google Scholar 

  30. Rodríguez, M. P. et al. Geochronology of pediments and marine terraces in north-central Chile and their implications for Quaternary uplift in the Western Andes. Geomorphology 180, 33–46 (2013).

    Article  Google Scholar 

  31. García, M., Riquelme, R., Farías, M., Hérail, G. & Charrier, R. Late Miocene–Holocene canyon incision in the western Altiplano, northern Chile: tectonic or climatic forcing? J. Geol. Soc. 168, 1047–1060 (2011).

    Article  Google Scholar 

  32. Malatesta, C., Gerya, T., Crispini, L., Federico, L. & Capponi, G. Oblique subduction modelling indicates along-trench tectonic transport of sediments. Nature Commun. 4, 2456 (2013).

    Article  Google Scholar 

  33. Lay, T. et al. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. Solid Earth 117, B04311 (2012).

    Article  Google Scholar 

  34. Farías, M. et al. Land-level changes produced by the Mw 8.8 2010 Chilean earthquake. Science 329, 916 (2010).

    Article  Google Scholar 

  35. Delouis, B. et al. The Mw = 8.0 Antofagasta (northern Chile) earthquake of 30 July 1995: a precursor to the end of the large 1877 gap. Bull. Seismol. Soc. Am. 87, 427–445 (1997).

    Google Scholar 

  36. Béjar-Pizarro, M. et al. Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data. Geophys. J. Int. 183, 390–406 (2010).

    Article  Google Scholar 

  37. Ruiz, S. et al. The Constitución earthquake of 25 March 2012: a large aftershock of the Maule earthquake near the bottom of the seismogenic zone. Earth Planet. Sci. Lett. 377, 347–357 (2013).

    Article  Google Scholar 

  38. Peyrat, S. et al. Tarapacá intermediate-depth earthquake (Mw 7.7, 2005, northern Chile): a slab-pull event with horizontal fault plane constrained from seismologic and geodetic observations. Geophys. Res. Lett. 33, L22308 (2006).

    Article  Google Scholar 

  39. Métois, M. et al. GPS-derived interseismic coupling on the subduction and seismic hazards in the Atacama region, Chile. Geophys. J. Int. 196, 644–655 (2014).

    Article  Google Scholar 

  40. Li, S., Moreno, M., Bedford, J., Rosenau, M. & Oncken, O. Revisiting visco-elastic effects on interseismic deformation and locking degree: a case study of the Peru—North Chile subduction zone. J. Geophys. Res. Solid Earth 120, 4522–4538 (2015).

    Article  Google Scholar 

  41. Comte, D. & Pardo, M. Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Nat. Hazards 4, 23–44 (1991).

    Article  Google Scholar 

  42. Wang, K., Hu, Y. & He, J. Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature 484, 327–332 (2012).

    Article  Google Scholar 

  43. Wang, K. & Bilek, S. L. Invited review paper: fault creep caused by subduction of rough seafloor relief. Tectonophysics 610, 1–24 (2014).

    Article  Google Scholar 

  44. Vergnolle, M. et al. Slow slip events in Mexico revised from the processing of 11 year GPS observations. J. Geophys. Res. Solid Earth 115, B08403 (2010).

    Article  Google Scholar 

  45. Paul, J., Rajendran, C. P., Lowry, A. R., Andrade, V. & Rajendran, K. Andaman postseismic deformation observations: still slipping after all these years? Bull. Seismol. Soc. Am. 102, 343–351 (2012).

    Article  Google Scholar 

  46. Hsu, Y.-J. et al. Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science 312, 1921–1926 (2006).

    Article  Google Scholar 

  47. Noda, H. & Lapusta, N. Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature 493, 518–521 (2013).

    Article  Google Scholar 

  48. Witter, R. C. et al. Unusually large tsunamis frequent a currently creeping part of the Aleutian megathrust. Geophys. Res. Lett. 43, 76–84 (2016).

    Article  Google Scholar 

  49. Allen, T. I., Marano, K. D., Earle, P. S. & Wald, D. J. PAGER-CAT: a composite earthquake catalog for calibrating global fatality models. Seismol. Res. Lett. 80, 57–62 (2009).

    Article  Google Scholar 

  50. Pritchard, M. E., Ji, C. & Simons, M. Distribution of slip from 11 Mw > 6 earthquakes in the northern Chile subduction zone. J. Geophys. Res. Solid Earth 111, B10302 (2006).

    Article  Google Scholar 

  51. Jara-Muñoz, J., Melnick, D. & Strecker, M. R. TerraceM: a Matlab GUI to analize wave-cut terraces from high-resolution topography. Geosphere 12, 1–20 (2016).

    Article  Google Scholar 

  52. Bintanja, R., van de Wal, R. S. W. & Oerlemans, J. Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437, 125–128 (2005).

    Article  Google Scholar 

  53. Schweller, W. J., Kulm, L. D. & Prince, R. A. Tectonics, structure, and sedimentary framework of the Peru–Chile trench. Geol. Soc. Am. Mem. 154, 323–349 (1981).

    Google Scholar 

  54. DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).

    Article  Google Scholar 

  55. Hayes, G. P., Wald, D. J. & Johnson, R. L. Slab1.0: a three-dimensional model of global subduction zone geometries. J. Geophys. Res. Solid Earth 117, B01302 (2012).

    Article  Google Scholar 

  56. Sunamura, T. Geomorphology of Rocky Coasts (John Wiley, 1992).

    Google Scholar 

  57. Anderson, R., Densmore, A. & Ellist, M. The generation and degredation of marine terraces. Basin Res. 11, 7–19 (1999).

    Article  Google Scholar 

  58. Hanks, T. C. in Quaternary Geochronology: Methods and Applications Vol. 4 (eds Noller, J. S., Sowers, J. M. & Lettis, W. R.) 313–338 (American Geopysical Union, 2000).

    Google Scholar 

  59. Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75, 1135–1154 (1985).

    Google Scholar 

  60. Tassara, A. & Echaurren, A. Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophys. J. Int. 189, 161–168 (2012).

    Article  Google Scholar 

  61. Motagh, M. et al. Subduction earthquake deformation associated with 14 November 2007, Mw 7.8 Tocopilla earthquake in Chile: results from InSAR and aftershocks. Tectonophysics 490, 60–68 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by German Science Foundation (DFG) grant ME 3157/4-1. Reviews by R. Briggs and J. Martinod helped to improve the paper. I thank J. Jara-Muñoz and K. Pedoja for discussions on marine terraces, M. Moreno on the earthquake cycle, and the continuous support of M. Strecker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Melnick.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 22027 kb)

Supplementary Information

Supplementary Information (MOV 1004 kb)

Supplementary Information

Supplementary Information (ZIP 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnick, D. Rise of the central Andean coast by earthquakes straddling the Moho. Nature Geosci 9, 401–407 (2016). https://doi.org/10.1038/ngeo2683

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2683

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing