Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mercury’s global contraction much greater than earlier estimates

Abstract

Mercury, a planet with a lithosphere that forms a single tectonic plate, is replete with tectonic structures interpreted to be the result of planetary cooling and contraction. However, the amount of global contraction inferred from spacecraft images has been far lower than that predicted by models of the thermal evolution of the planet’s interior. Here we present a synthesis of the global contraction of Mercury from orbital observations acquired by the MESSENGER spacecraft. We show that Mercury’s global contraction has been accommodated by a substantially greater number and variety of structures than previously recognized, including long belts of ridges and scarps where the crust has been folded and faulted. The tectonic features on Mercury are consistent with models for large-scale deformation proposed for a globally contracting Earth—now obsolete—that pre-date plate tectonics theory. We find that Mercury has contracted radially by as much as 7 km, well in excess of the 0.8–3 km previously reported from photogeology and resolving the discrepancy with thermal models. Our findings provide a key constraint for studies of Mercury’s thermal history, bulk silicate abundances of heat-producing elements, mantle convection and the structure of its large metallic core.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary styles of thrust faulting on Mercury.
Figure 2: Shortening structures on Mercury.
Figure 3: A Mercury fold-and-thrust belt (FTB).

Similar content being viewed by others

References

  1. De Beaumont, E. L. Faits pour servir a l’histoire des montagnes de l’Oisans. Mém. Soc. d’Hist. Natur. Paris 5, 1–32 (1829).

    Google Scholar 

  2. Dana, J. D. On some results of the Earth’s contraction from cooling, including a discussion of the origin of mountains and the nature of the Earth’s interior. Am. J. Sci. 5, 423–443 (1873).

    Article  Google Scholar 

  3. Wilson, J. T. Hypothesis of Earth’s behaviour. Nature 198, 925–929 (1963).

    Article  Google Scholar 

  4. Dutton, C. E. A criticism of the contractional hypothesis. Am. J. Sci. 8, 113–123 (1874).

    Article  Google Scholar 

  5. Strom, R. G., Trask, J. J. & Guest, J. E. Tectonism and volcanism on Mercury. J. Geophys. Res. 80, 2478–2507 (1975).

    Article  Google Scholar 

  6. Melosh, H. J. & McKinnon, W. B. in Mercury (eds Vilas, F., Chapman, C. R. & Matthews, M. S.) The tectonics of Mercury. 374–400 (Univ. Arizona Press, 1988).

    Google Scholar 

  7. Hauck, S. A. II, Dombard, A. J., Phillips, R. J. & Solomon, S. C. Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett. 222, 713–728 (2004).

    Article  Google Scholar 

  8. Watters, T. R., Robinson, M. S. & Cook, A. C. Topography of lobate scarps on Mercury: New constraints on the planet’s contraction. Geology 26, 991–994 (1998).

    Article  Google Scholar 

  9. Watters, T. R. et al. The tectonics of Mercury: The view after MESSENGER’s first flyby. Earth Planet. Sci. Lett. 285, 283–296 (2009).

    Article  Google Scholar 

  10. Marchi, S. et al. Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61 (2013).

    Article  Google Scholar 

  11. Watters, T. R. & Nimmo, F. in Planetary Tectonics (eds Watters, T. R. & Schultz, R. A.) The tectonics of Mercury. 15–80 (Cambridge Univ. Press, (2010).

    Google Scholar 

  12. Di Achille, G. et al. Mercury’s radius change estimates revisited using MESSENGER data. Icarus 221, 456–460 (2012).

    Article  Google Scholar 

  13. Solomon, S. C. The relationship between crustal tectonics and internal evolution in the Moon and Mercury. Phys. Earth. Plan. Inter. 15, 135–145 (1977).

    Article  Google Scholar 

  14. Schubert, G., Ross, M. N., Stevenson, D. J. & Spohn, T. in Mercury (eds Vilas, F., Chapman, C. R. & Matthews, M. S.) Mercury’s thermal history and the generation of its magnetic field. 429–460 (Univ. Arizona Press, 1988).

    Google Scholar 

  15. Dombard, A. J. & Hauck II, S. A Despinning plus global contraction and the orientation of lobate scarps on Mercury: Predictions for MESSENGER. Icarus 198, 274–276 (2008).

    Article  Google Scholar 

  16. Stille, H. Über Alter und Art der Phasen variszischer Gebirgsbildung. Nachr. k. Ges. Will. Göttingen, Math.-Phys. Kl., Jg. 218–224 (1920).

  17. Zuber, M. T. et al. Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry. Science 336, 217–220 (2012).

    Article  Google Scholar 

  18. Denevi, B. W. et al. The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets 118, 891–907 (2013).

    Article  Google Scholar 

  19. Trask, N. J. & Guest, J. E. Preliminary geologic terrain map of Mercury. J. Geophys. Res. 80, 2461–2477 (1975).

    Article  Google Scholar 

  20. Head, J. W. et al. Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science 333, 1853–1856 (2011).

    Article  Google Scholar 

  21. Melosh, H. J. & Dzurisin, D. Mercurian global tectonics: A consequence of tidal despinning?. Icarus 35, 227–236 (1978).

    Article  Google Scholar 

  22. Poblet, J. & Lisle, R. J. Kinematic evolution and styles of fold-and-thrust belts. Geol. Soc. Lond. Spec. Pub. 349, 1–24 (2011).

    Article  Google Scholar 

  23. Burke, K. C., Şengör, A. M. C. & Francis, P. W. Maxwell Montes in Ishtar—A collisional plateau on Venus?. Lunar Planet. Sci. 15, 104–105 (1984).

    Google Scholar 

  24. Thrust Tectonics (ed McClay, K. R.) (Chapman & Hall, 1992).

  25. Roeder, D. American and Tethyan Fold-Thrust Belts (Gebrüder Borntraeger, (2009).

    Google Scholar 

  26. Rothery, D. A. & Massironi, M. Beagle Rupes—Evidence for a basal decollement of regional extent in Mercury’s lithosphere. Icarus 209, 256–261 (2010).

    Article  Google Scholar 

  27. Watters, T. R. Elastic dislocation modeling of wrinkle ridges on Mars. Icarus 171, 284–294 (2004).

    Article  Google Scholar 

  28. Weider, S. Z. et al. Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J. Geophys. Res. 117, E00L05 (2012).

    Article  Google Scholar 

  29. Denevi, B. W. et al. The evolution of Mercury’s crust: A global perspective from MESSENGER. Science 324, 613–618 (2009).

    Google Scholar 

  30. Mueller, K. & Golombek, M. Compressional structures on Mars. Annu. Rev. Earth Planet. Sci. 32, 435–464 (2004).

    Article  Google Scholar 

  31. Schultz, R. A. Localization of bedding plane slip and backthrust faults above blind thrust faults: Keys to wrinkle ridge structure. J. Geophys. Res. 105, 12035–12052 (2000).

    Article  Google Scholar 

  32. Smith, D. E. et al. Gravity field and internal structure of Mercury from MESSENGER. Science 336, 214–217 (2012).

    Article  Google Scholar 

  33. Suess, E. Das Antlitz der Erde, Vol. III.2 (Tempsky, Prag & Freytag, (1909).

    Google Scholar 

  34. Şengör, A. M. C., Natal’in, B. A. & Burtman, V. S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364, 299–307 (1993).

    Article  Google Scholar 

  35. Trümpy, R. Geology of Switzerland, A Guide-book. A: An Outline of the Geology of Switzerland (Schweizerische Geologische Kommission, (1980).

    Google Scholar 

  36. Bois, C. et al. in Reflection Seismology: A Global Perspective (eds Barazangi, M. & Brown, L.) Deep seismic profiling of the crust in northern France: The ECORS Project. 21–29 (Am. Geophys. Un., 1986).

    Chapter  Google Scholar 

  37. Hatcher, R. D. Jr in The Appalachian-Ouachita Orogen in the United States, The Geology of North America (eds Hatcher, R. D. Jr, Thomas, W. A. & Viele, G. W.) Tectonic synthesis of the US Appalachians. 511–535 (Geol. Soc. Am., 1989).

    Google Scholar 

  38. McDougall, J. W., Hussain, A. & Yeats, R. S. in Himalayan Tectonics (eds Treolar, P. J. & Searle, M. P.) 581–588 (Geol. Soc. Lond. Spec. Pub. 74, 1993).

    Google Scholar 

  39. Stille, H. Einführung in den Bau Amerikas (Gebrüder Borntraeger, (1940).

    Google Scholar 

  40. Roeder, D. Andean-age structure of Eastern Cordillera (Province of La Paz, Bolivia). Tectonics 7, 23–39 (1988).

    Article  Google Scholar 

  41. Klimczak, C. et al. Insights into the subsurface structure of the Caloris Basin, Mercury, from assessments of mechanical layering and changes in long-wavelength topography. J. Geophys. Res. Planets 118, 2030–2044 (2013).

    Article  Google Scholar 

  42. McAdoo, D. C. & Sandwell, D. T. Folding of oceanic lithosphere. J. Geophys. Res. 90, 8563–8569

  43. King, S. D. Pattern of lobate scarps on Mercury’s surface reproduced by a model of mantle convection. Nature Geosci. 1, 229–232 (2008).

    Article  Google Scholar 

  44. Michel, N. C. et al. Thermal evolution of Mercury as constrained by MESSENGER observations. J. Geophys. Res. Planets 117, 1033–1044 (2013).

    Article  Google Scholar 

  45. Peplowski, P. N. et al. Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science 333, 1850–1852 (2011).

    Article  Google Scholar 

  46. Grott, M., Breuer, D. & Laneuville, M. Thermo-chemical evolution and global contraction of Mercury. Earth. Planet. Sci. Lett. 307, 135–146 (2011).

    Article  Google Scholar 

  47. Barclay, T. et al. A sub-Mercury-sized exoplanet. Nature 494, 452–454 (2013).

    Article  Google Scholar 

  48. Hawkins, S. E. III et al. The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Sci. Rev. 131, 247–338 (2007).

    Article  Google Scholar 

  49. Becker, K. J. et al. Global controlled mosaic of Mercury from MESSENGER orbital images. Lunar Planet. Sci. 43, abstr. 2654 (2012).

    Google Scholar 

  50. Clark, R. M. & Cox, S. J. D. A modern regression approach to determining fault displacement-length scaling relationships. J. Struct. Geol. 18, 147–152 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. M. Ernst and N. L. Chabot (The Johns Hopkins University Applied Physics Laboratory, JHU/APL) for the incidence angle maps shown in Supplementary Fig. 2b, c and H. J. Melosh (Purdue University) for his constructive advice during the preparation of this paper. We also thank W. B. McKinnon for comments that substantially improved this manuscript. The MESSENGER project is supported by the NASA Discovery Program under contracts NASW-00002 to the Carnegie Institution of Washington and NAS5–97271 to JHU/APL. This research has made use of NASA’s Astrophysics Data System and Planetary Data System.

Author information

Authors and Affiliations

Authors

Contributions

P.K.B. and C.K. led the study, carried out data analyses and documented the findings; P.K.B., C.K., A.M.C.S. and S.A.H. wrote the manuscript and P.K.B. prepared the figures. A.M.C.S. led the historical review of the description and interpretation of contractional landforms on Earth. S.C.S. and T.R.W. participated in scientific discussions. All authors contributed to the interpretation of results and to the finalization of the submitted manuscript.

Corresponding author

Correspondence to Paul K. Byrne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 13820 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, P., Klimczak, C., Celâl Şengör, A. et al. Mercury’s global contraction much greater than earlier estimates. Nature Geosci 7, 301–307 (2014). https://doi.org/10.1038/ngeo2097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing