Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in the cardiac myosin binding protein–C gene on chromosome 11 cause familial hypertrophic cardiomyopathy

Abstract

Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant disorder manifesting as cardiac hypertrophy with myocyte disarray and an increased risk of sudden death1,2. Mutations in five different loci cause FHC and 3 disease genes have been identified: β cardiac myosin heavy chain3, α tropomyosin and cardiac troponin T4,5. Because these genes encode contractile proteins, other FHC loci are predicted also to encode sar-comere components4. Two further FHC loci have been mapped to chromosomes 11p13–q13 (CMH4, ref. 6) and 7q3 (ref. 7). The gene encoding the cardiac isoform of myosin binding protein-C (cardiac MyBP-C) has recently been assigned to chromosome 11 p11.2 and proposed as a candidate FHC gene8. Cardiac MyBP-C is arrayed transversely in sarcomere A-bands and binds myosin heavy chain in thick filaments and titin in elastic filaments. Phosphorylation of MyBP-C appears to modulate contraction8–10. We report that cardiac MyBP-C is genetically linked to CMH4 and demonstrate a splice donor mutation in one family with FHC and a duplication mutation in a second. Both mutations are predicted to disrupt the high affinity, C-terminal, myosin-binding domain of cardiac MyBP-C. These findings define cardiac MyBP-C mutations as the cause of FHC on chromosome 11 p and reaffirm that FHC is a disease of the sarcomere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Maron, B.J., Bonow, R.O., Cannon, R.O., Leon, M.B. & Epstein, S.E. Hypertrophic cardiomyopathy: interrelations of clinical manifestations, pathophysiology, and therapy. New Engl. J. Med. 316, 780–89 & 844–52 (1987).

    Article  CAS  Google Scholar 

  2. McKenna, W.J. & Watkins, H. Hypertrophic cardiomyopathy. in The Metabolic Basis of Inherited Disease. 7th edn (eds Scriver, C.R., Beaudet, A.L, Sly, W.S. & Valle, D.) 4253–4272 (McGraw-Hill, New York, 1995).

    Google Scholar 

  3. Geisterfer-Lowrance, A.A.T. et al. A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation. Cell 62, 999–1006 (1990).

    Article  CAS  Google Scholar 

  4. Thierfelder, L. et al. Mutations in α-tropomyosin and in cardiac troponin T cause hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77, 701–712 (1994).

    Article  Google Scholar 

  5. Watkins, H. et al. The role of mutations in cardiac troponin T and α tropomyosin in familial hypertrophic cardiomyopathy. New Engl. J. Med. 332, 1058–1064 (1995).

    Article  CAS  Google Scholar 

  6. Carrier, L. et al. Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nature Genet. 4, 311–313 (1993).

    Article  CAS  Google Scholar 

  7. MacRae, C.A. et al. Familial hypertrophic cardiomyopathy with Wolff-Parkinson-White syndrome maps to a locus on chromosome 7q3. J. clin. Invest. (in the press).

  8. Gautel, M., Zuffardi, O., Freiburg, A. & Labeit, S. Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? EMBO J. 14, 1952–1960 (1995).

    Article  CAS  Google Scholar 

  9. Vaughan, K.T., Weber, F.E. & Fischman, D.A. cDNA cloning and sequence comparisons of human and chicken muscle C-protein and 86 kDa protein. Symp. Soc. exp. Biol. 46, 167–177 (1992).

    CAS  PubMed  Google Scholar 

  10. Vaughan, K.T., Weber, F.E., Einheber, S. & Fischman, D.A. Molecular cloning of chicken myosin-binding protein H (MyB) H (86-kDa protein) reveals extensive homology with the MyB-C (C-protein) with conserved immunoglobulin C2 and fibronectin type III motifs. J. biol. Chem. 268, 3670–3676 (1993).

    CAS  PubMed  Google Scholar 

  11. Whitehead Institute for Biomedical Research/MIT Centre for Genome Research YAC database. Center for Genome Research, Whitehead Institute for Biomedical Research/MIT. Building 300, One Kendall Square, Cambridge, MA 02139.

  12. Gyapay, G. et al. The 1993-94 Généthon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

    Article  CAS  Google Scholar 

  13. Shapiro, M.B. & Senapathy, P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucl. Acids Res. 15, 7155–7174 (1987).

    Article  CAS  Google Scholar 

  14. Green, M.R. Pre-mRNA splicing. A Rev. Genet. 20, 671–708 (1986).

    Article  CAS  Google Scholar 

  15. Robberson, B.L., Cote, G.J. & Berget, S.M. Exon definition may facilitate splice site selection in RNAs with multiple exons. Molec. cell. Biol. 10, 84–94 (1990).

    Article  CAS  Google Scholar 

  16. Williams, A.F. & Barclay, A.N. The immunoglobulin superfamily: domains for cell surface recognition. A Rev. Immun. 6, 381–405 (1988).

    Article  CAS  Google Scholar 

  17. Okagaki, T. et al. The major myosin-binding domain of skeletal muscle MyBP-C (C-protein) resides in the COOH-terminal immunoglobulin C2 motif. J. Cell Biol. 123, 619–626 (1993).

    Article  CAS  Google Scholar 

  18. Schultheiis, T. et al. Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibril. J. Cell Biol. 110, 1159–1172 (1990).

    Article  Google Scholar 

  19. Moos, C. & Feng, I.M. Effect of C-protein on actomyosin ATPase. Biochim. biophys. Acta 632, 141–149 (1980).

    Article  CAS  Google Scholar 

  20. Schlender, K. & Bean, L.J. Phosphorylation of chick cardiac C-protein by calcium/calmodulin-dependent protein kinase II. J. biol. Chem. 266, 2811–2817 (1991).

    CAS  PubMed  Google Scholar 

  21. Furst, D.O., Vmkemeyer, U. & Weber, K. Mammalian skeletal muscle C-protein: purification from bovine muscle, binding to titin and the characterization of a full-length cDNA. J. Cell Sci. 102, 769–778 (1992).

    PubMed  Google Scholar 

  22. Watkins, H. Searching candidate genes for mutations: amplification of sequences from affected individuals; cleavage of RNA–DNA hybrids at mutation sites using RNase A. in Current Protocols in Human Genetics. (eds Dracopoli, N. et al.) 7.1–7.2 (Greene Publishing Associates and John Wiley and Sons, 1994).

    Google Scholar 

  23. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. natn. Acad. Sci. U.S.A. 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  24. Weber, F.E., Vaughan, K.T., Reinach, F.C. & Fischmann, D.E. Complete sequence of human fast-type and slow-type muscle myosin-binding protein C (myBP-C). Eur. J. Biochem. 216, 661–669 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watkins, H., Conner, D., Thierfelder, L. et al. Mutations in the cardiac myosin binding protein–C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet 11, 434–437 (1995). https://doi.org/10.1038/ng1295-434

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1295-434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing