Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A novel ubiquitin ligase is deficient in Fanconi anemia

Abstract

Fanconi anemia is a recessively inherited disease characterized by congenital defects, bone marrow failure and cancer susceptibility1,2. Cells from individuals with Fanconi anemia are highly sensitive to DNA-crosslinking drugs, such as mitomycin C (MMC). Fanconi anemia proteins function in a DNA damage response pathway involving breast cancer susceptibility gene products, BRCA1 and BRCA2 (refs. 1,2). A key step in this pathway is monoubiquitination of FANCD2, resulting in the redistribution of FANCD2 to nuclear foci containing BRCA1 (ref. 3). The underlying mechanism is unclear because the five Fanconi anemia proteins known to be required for this ubiquitination have no recognizable ubiquitin ligase motifs. Here we report a new component of a Fanconi anemia protein complex, called PHF9, which possesses E3 ubiquitin ligase activity in vitro and is essential for FANCD2 monoubiquitination in vivo. Because PHF9 is defective in a cell line derived from an individual with Fanconi anemia, we conclude that PHF9 (also called FANCL) represents a novel Fanconi anemia complementation group (FA-L). Our data suggest that PHF9 has a crucial role in the Fanconi anemia pathway as the likely catalytic subunit required for monoubiquitination of FANCD2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PHF9 is a component of the Fanconi anemia core complex.
Figure 3: PHF9/Pog contains a PHD finger–type E3 ubiquitin ligase motif and has autoubiquitin ligase activity in vitro.
Figure 2: Nuclear localization of PHF9 is defective in cells from several Fanconi anemia complementation groups.
Figure 4: PHF9-knockdown cells have less monoubiquitinated FANCD2 and fewer FANCD2 nuclear foci.
Figure 5: PHF9 is deficient in an individual with Fanconi anemia.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Joenje, H. & Patel, K.J. The emerging genetic and molecular basis of Fanconi anaemia. Nat. Rev. Genet. 2, 446–459 (2001).

    Article  CAS  Google Scholar 

  2. D'Andrea, A.D. & Grompe, M. The Fanconi anaemia/BRCA pathway. Nat. Rev. Cancer 3, 23–34 (2003).

    Article  CAS  Google Scholar 

  3. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001).

    Article  CAS  Google Scholar 

  4. Meetei, A.R. et al. A multiprotein nuclear complex connects Fanconi anemia and bloom syndrome. Mol. Cell. Biol. 23, 3417–3426 (2003).

    Article  CAS  Google Scholar 

  5. Garcia-Higuera, I., Kuang, Y., Naf, D., Wasik, J. & D'Andrea, A.D. Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex. Mol. Cell. Biol. 19, 4866–4873 (1999).

    Article  CAS  Google Scholar 

  6. de Winter, J.P. et al. The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum. Mol. Genet. 9, 2665–2674 (2000).

    Article  CAS  Google Scholar 

  7. Medhurst, A.L., Huber, P.A., Waisfisz, Q., de Winter, J.P. & Mathew, C.G. Direct interactions of the five known Fanconi anaemia proteins suggest a common functional pathway. Hum. Mol. Genet. 10, 423–429 (2001).

    Article  CAS  Google Scholar 

  8. Yamashita, T. et al. The fanconi anemia pathway requires FAA phosphorylation and FAA/FAC nuclear accumulation. Proc. Natl. Acad. Sci. USA 95, 13085–13090 (1998).

    Article  CAS  Google Scholar 

  9. Pace, P. et al. FANCE: the link between Fanconi anaemia complex assembly and activity. EMBO J. 21, 3414–3423 (2002).

    Article  CAS  Google Scholar 

  10. Taniguchi, T. & D'Andrea, A.D. The Fanconi anemia protein, FANCE, promotes the nuclear accumulation of FANCC. Blood 100, 2457–2462 (2002).

    Article  CAS  Google Scholar 

  11. Smith, T.F., Gaitatzes, C., Saxena, K. & Neer, E.J. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24, 181–185 (1999).

    Article  CAS  Google Scholar 

  12. Coscoy, L., Sanchez, D.J. & Ganem, D. A novel class of herpes virus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J. Cell. Biol. 155, 1265–1273 (2001).

    Article  CAS  Google Scholar 

  13. Hewitt, E.W. et al. Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. EMBO J. 21, 2418–2429 (2002).

    Article  CAS  Google Scholar 

  14. Lu, Z., Xu, S., Joazeiro, C., Cobb, M.H. & Hunter, T. The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol. Cell 9, 945–956 (2002).

    Article  CAS  Google Scholar 

  15. Coscoy, L. & Ganem, D. PHD domains and E3 ubiquitin ligases: viruses make the connection. Trends Cell. Biol. 13, 7–12 (2003).

    Article  CAS  Google Scholar 

  16. Agoulnik, A.I. et al. A novel gene, Pog, is necessary for primordial germ cell proliferation in the mouse and underlies the germ cell deficient mutation, gcd. Hum. Mol. Genet. 11, 3047–3053 (2002).

    Article  CAS  Google Scholar 

  17. Chen, M. et al. Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nat. Genet. 12, 448–451 (1996).

    Article  CAS  Google Scholar 

  18. Whitney, M.A. et al. Germ cell defects and hematopoietic hypersensitivity to gamma- interferon in mice with a targeted disruption of the Fanconi anemia C gene. Blood 88, 49–58 (1996).

    CAS  PubMed  Google Scholar 

  19. Cheng, N.C. et al. Mice with a targeted disruption of the Fanconi anemia homolog Fanca. Hum. Mol. Genet. 9, 1805–1811 (2000).

    Article  CAS  Google Scholar 

  20. Nadler, J.J. & Braun, R.E. Fanconi anemia complementation group C is required for proliferation of murine primordial germ cells. Genesis 27, 117–123 (2000).

    Article  CAS  Google Scholar 

  21. Yang, Y. et al. Targeted disruption of the murine Fanconi anemia gene, Fancg/Xrcc9. Blood 98, 3435–3440 (2001).

    Article  CAS  Google Scholar 

  22. Koomen, M. et al. Reduced fertility and hypersensitivity to mitomycin C characterize Fancg/Xrcc9 null mice. Hum. Mol. Genet. 11, 273–281 (2002).

    Article  CAS  Google Scholar 

  23. Vandenberg, C.J. et al. BRCA1-independent ubiquitination of FANCD2. Mol. Cell 12, 247–254 (2003).

    Article  CAS  Google Scholar 

  24. Brunn, D. et al. siRNA depletion of BRCA1, but not BRCA2, causes increased genome instability in Fanconi anemia cells. DNA Repair advance online publication, 16 July 2003 (doi:10.1016/S1568-7864(03)00112-5).

    Google Scholar 

  25. Joenje, H. et al. Classification of Fanconi anemia patients by complementation analysis: evidence for a fifth genetic subtype. Blood 86, 2156–2160 (1995).

    CAS  PubMed  Google Scholar 

  26. Dignam, J.D., Martin, P.L., Shastry, B.S. & Roeder, R.G. Eukaryotic gene transcription with purified components. Methods Enzymol. 101, 582–598 (1983).

    Article  CAS  Google Scholar 

  27. Waisfisz, Q. et al. A physical complex of the Fanconi anemia proteins FANCG/XRCC9 and FANCA. Proc. Natl. Acad. Sci. USA 96, 10320–10325 (1999).

    Article  CAS  Google Scholar 

  28. Joenje, H., Arwert, F., Eriksson, A.W., de Koning, H. & Oostra, A.B. Oxygen-dependence of chromosomal aberrations in Fanconi's anaemia. Nature 290, 142–143 (1981).

    Article  CAS  Google Scholar 

  29. Hoatlin, M.E. et al. The Fanconi anemia group C gene product is located in both the nucleus and cytoplasm of human cells. Blood 91, 1418–1425 (1998).

    CAS  PubMed  Google Scholar 

  30. Aravind L.I.L.M., Koonin, E.V. Scores of rings but no PHDs in ubiquitin signaling. Cell Cycle 2, 123–126 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. J. Patel for FANCE antibody and communicating unpublished data, M. Grompe for FANCD2 cDNA, Z. Lu and T. Hunter for MEKK1, Y. Qiong for ubiquitin vectors, J. Chen for BRCA1 cells, Y. Yang for ubiquitin reagents, N. Sherman for mass spectrometry identification, J. Qin and L. Li for advice, D. Schlessinger for critical reading of the manuscript and the National Cell Culture Center for providing cells. W.W. has received funding from the Ellison Medical Foundation and Rett Syndrome Research Foundation. This work was also supported by the Dutch Cancer Society (A.L.M. and H.J.V.), the Netherlands Organization for Health Research and Development (J.P.W. and Q.W.) and the US National Institutes of Health (W.W. and M.E.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meetei, A., de Winter, J., Medhurst, A. et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nat Genet 35, 165–170 (2003). https://doi.org/10.1038/ng1241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing