Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A common mutation in the FACC gene causes Fanconi anaemia in Ashkenazi Jews

Abstract

Fanconi anaemia is an autosomal recessive disease for which four known complementation groups exist. Recently, the gene defective in complementation group C (FACC) has been cloned. In order to determine the fraction of Fanconi anaemia caused by FACC mutations, we used reverse transcription PCR and chemical mismatch cleavage (CMC) to examine the FACC cDNA in 17 FA cell lines. 4/17 patients (23.5%) had mutations in this gene. Two Ashkenazi–Jewish individuals were homozygous for an identical splice mutation. Three additional Jewish patients bearing this allele were found upon screening 21 other families. We conclude that a common mutation in FACC accounts for the majority of Fanconi anaemia in Ashkenazi–Jewish families.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fanconi, G. Familial constitutional panmyelocytopathy, Fanconi's anemia (F.A.) I. Clinical aspects. Semin. Hematol. 4, 233–240 (1967).

    CAS  PubMed  Google Scholar 

  2. Billardon, B. & Moustacchi, E. Comparison of the sensitivity of Fanconi's anemia and normal fibroblasts of sister-chromatic exchanges by photoaddition of mono- and bi-functional psoralens. Mutat. Res. 174, 241–246 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Auerbach, A.D. et al. Clastogen-induced chromosomal breakage as a marker for first trimester prenatal diagnosis of Fanconi anemia. Hum. Genet. 73, 86–8 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Strathdee, C.A., Duncan, A.M.V. & Buchwald, M. Evidence for at least four Fanconi anaemia genes including FACC on chromosome 9. Nature Genet. 1, 196–198 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Mann, W.R. et al. Fanconi anemia: evidence for linkage heterogeneity on chromosome 20q. Genomics 9, 329–337 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Strathdee, C.A., Gavish, H., Shannon, W.R. & Buchwald, M. Cloning of cDNAs for Fanconi's anemia by functional complementation. Nature 356, 763–767 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Cotton, R.G., Rodrigues, N.R. & Campbell, R.D. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc. natn. Acad. Sci. U.S.A. 85, 4397–401 (1988).

    Article  CAS  Google Scholar 

  8. Cotton, R.G.H. Detection of single base changes in nucleic acid. Adv. genome Biol. 1, 253–300 (1992).

    Google Scholar 

  9. Gibson, R.A., Buchwald, M., Roberts, R.G. & Mathew, C.G. Characterization of the exon structure of the fanconi anemia group C gene by vectorette PCR. Hum. Molec. Genet. (in the press).

  10. Shapiro, M.B. & Senapathy, P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucl. Acids Res. 15, 7155–74 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Senapathy, P., Shapiro, M.B. & Harris, N.L. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Meth. Enzymol. 183, 252–78 (1990).

    Article  CAS  Google Scholar 

  12. Wu, D.Y., Nozari, G., Schold, M., Conner, B.J. & Wallace, R.B. Direct analysis of single nucleotide variation in human DNA and RNA using in situ dot hybridization. DNA 8, 135–42 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Gravel, R.A., Triggs, R.B.L. & Mahuran, D.J. Biochemistry and genetics of Tay-Sachs disease. Can. J. neurol. Sci. (1991).

  14. Beutler, E., Gelbart, T., Kuhl, W., Zimran, A. & West, C. Mutations in Jewish patients with Gaucher disease. Blood 79, 1662–6 (1992).

    CAS  PubMed  Google Scholar 

  15. Mononen, I. et al. Aspartylglycosaminuria in a non-Finnish patient caused by a donor splice mutation in the glycoasparaginase gene. J. biol. Chem. 267, 3196–3199 (1992).

    CAS  PubMed  Google Scholar 

  16. Hodges, P.E. & Rosenberg, L.E. The spfash mouse: a missense mutation in the ornithine transcarbamylase gene also causes aberrant mRNA splicing. Proc. natn. Acad. Sci. U.S.A. 86, 4142–6 (1989).

    Article  CAS  Google Scholar 

  17. Nienhuis, A.W. et al. Gene therapy approaches for enzyme deficiencies p. 34 (National Heart, Lung and Blood Institute, Bethesda, Maryland, 1992).

  18. Auerbach, A.D., Verlander, P.C., Mann, W.R., Allen, R.G. & Adler-Brecher, B. Linkage of a Fanconi anemia gene to chromosome 20q. p. 18 (National Heart, Lung and Blood Institute, Bethesda, Maryland, 1992).

  19. Buchwald, M. et al. Cloning of the Fanconi anemia C gene by functional complemenation 1–19 (National Heart, Lung and Blood Institute, Bethesda, Maryland, 1992).

  20. Boyd, J.B., Harris, P.V. & Leonhardt, E.A. Genetic and molecular analysis of the Drosophila mus308 gene, a potential analogue of Fanconi anemia A. p. 15 (National Heart, Lung and Blood Institute, Bethesda, Maryland, 1992).

  21. Moses, R.E. & Beaudet, A.L. Apurinic DNA endonuclease activities in repair-deficient human cell lines. Nucl. Acids Res. 5, 463–73 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun, Y. & Moses, R.E. Reactivation of psoralen-reacted plasmid DNA in Fanconi anemia, xeroderma pigmentosum, and normal human fibroblast cells. Somatec. Cell molec. Genet. 17, 229–38 (1991).

    Article  CAS  Google Scholar 

  23. Kobayashi, K., Jackson, M.J., Tick, D.B., OBrien, W.E. & Beaudet, A.L. Heterogeneity of mutations in argininosuccinate synthetase causing human citrullinemia. J. biol. Chem. 265, 11361–7 (1990).

    CAS  PubMed  Google Scholar 

  24. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–9 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Mullis, K.B. & Faloona, F.A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335–50 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Kogan, S.C., Doherty, M. & Gitschier, J. An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences: application to hemophilia A. New Engl. J. Med. 317, 985–990 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Grompe, M., Muzny, D.M. & Caskey, C.T. Scanning detection of mutations in human ornithine transcarbamoylase by chemical mismatch cleavage. Proc. natn. Acad. Sci. U.S.A. 86, 5888–92 (1989).

    Article  CAS  Google Scholar 

  28. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

  29. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

  30. Cohen, M.M. et al. Ataxia teleangiectasia: chromosomal stability in continous lymphoblastoid cell lines. Cytogenet. Cell Genet. 23, 44–52 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitney, M., Saito, H., Jakobs, P. et al. A common mutation in the FACC gene causes Fanconi anaemia in Ashkenazi Jews. Nat Genet 4, 202–205 (1993). https://doi.org/10.1038/ng0693-202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0693-202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing