Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Malleable machines take shape in eukaryotic transcriptional regulation

Abstract

Transcriptional control requires the spatially and temporally coordinated action of many macromolecular complexes. Chromosomal proteins, transcription factors, co-activators and components of the general transcription machinery, including RNA polymerases, often use structurally or stoichiometrically ill-defined regions for interactions that convey regulatory information in processes ranging from chromatin remodeling to mRNA processing. Determining the functional significance of intrinsically disordered protein regions and developing conceptual models of their action will help to illuminate their key role in transcription regulation. Complexes comprising disordered regions often display short recognition elements embedded in flexible and sequentially variable environments that can lead to structural and functional malleability. This provides versatility to recognize multiple targets having different structures, facilitate conformational rearrangements and physically communicate with many partners in response to environmental changes. All these features expand the capacities of ordered complexes and give rise to efficient regulatory mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the four main (highly interdependent) components of the eukaryotic transcription machinery.
Figure 2: Molecular recognition by intrinsically disordered proteins.
Figure 3: Domain structure of CBP/p300 transcriptional co-activator and three-dimensional structures of complexes of globular CBP domains with disordered transcription factors bound.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Sigler, P.B. Transcriptional activation. Acid blobs and negative noodles. Nature 333, 210–212 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Ansari, A.Z., Reece, R.J. & Ptashne, M. A transcriptional activating region with two contrasting modes of protein interaction. Proc. Natl. Acad. Sci. USA 95, 13543–13548 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dunker, A.K., Obradovic, Z., Romero, P., Garner, E.C. & Brown, C.J. Intrinsic protein disorder in complete genomes. Genome Inform. Ser. Workshop Genome Inform. 11, 161–171 (2000).

    CAS  PubMed  Google Scholar 

  4. Asturias, F.J. Another piece in the transcription initiation puzzle. Nat. Struct. Mol. Biol. 11, 1031–1033 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Romero, P. et al. Thousands of proteins likely to have long disordered regions. Pac. Symp. Biocomput. 3, 437–448 (1998).

    Google Scholar 

  6. Tompa, P. & Fuxreiter, M. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 33, 2–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Wright, P.E. & Dyson, H.J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Sickmeier, M. et al. DisProt: the database of disordered proteins. Nucleic Acids Res. 35, D786–D793 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Flaugh, S.L. & Lumb, K.J. Effects of macromolecular crowding on the intrinsically disordered proteins c-Fos and p27(Kip1). Biomacromolecules 2, 538–540 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. McNulty, B.C., Young, G.B. & Pielak, G.J. Macromolecular crowding in the Escherichia coli periplasm maintains alpha-synuclein disorder. J. Mol. Biol. 355, 893–897 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Dyson, H.J. & Wright, P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Demarest, S.J. et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415, 549–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Uversky, V.N. Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739–756 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lacy, E.R. et al. p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat. Struct. Mol. Biol. 11, 358–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Adams, V.H., McBryant, S.J., Wade, P.A., Woodcock, C.L. & Hansen, J.C. Intrinsic disorder and autonomous domain function in the multifunctional nuclear protein, MeCP2. J. Biol. Chem. 282, 15057–15064 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Uversky, V.N., Gillespie, J.R. & Fink, A.L. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41, 415–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Tompa, P. Intrinsically unstructured proteins evolve by repeat expansion. Bioessays 25, 847–855 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Hansen, J.C., Lu, X., Ross, E.D. & Woody, R.W. Intrinsic protein disorder, amino acid composition, and histone terminal domains. J. Biol. Chem. 281, 1853–1856 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Dunker, A.K. et al. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac. Symp. Biocomput. 3, 473–484 (1998).

    Google Scholar 

  20. Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527–533 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Tompa, P. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 579, 3346–3354 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Denning, D.P., Patel, S.S., Uversky, V., Fink, A.L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl. Acad. Sci. USA 100, 2450–2455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salghetti, S.E., Caudy, A.A., Chenoweth, J.G. & Tansey, W.P. Regulation of transcriptional activation domain function by ubiquitin. Science 293, 1651–1653 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Goodman, R.H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Tompa, P. & Csermely, P. The role of structural disorder in the function of RNA and protein chaperones. FASEB J. 18, 1169–1175 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Pierce, M.M., Baxa, U., Steven, A.C., Bax, A. & Wickner, R.B. Is the prion domain of soluble Ure2p unstructured? Biochemistry 44, 321–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Uversky, V.N., Oldfield, C.J. & Dunker, A.K. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J. Mol. Recognit. 18, 343–384 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Dyson, H.J. & Wright, P.E. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12, 54–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Fuxreiter, M., Simon, I., Friedrich, P. & Tompa, P. Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J. Mol. Biol. 338, 1015–1026 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, H. et al. Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J. Biol. Chem. 275, 29426–29432 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Oldfield, C.J. et al. Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44, 12454–12470 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Csizmok, V. et al. Primary contact sites in intrinsically unstructured proteins: the case of calpastatin and microtubule-associated protein 2. Biochemistry 44, 3955–3964 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Neduva, V. & Russell, R.B. Linear motifs: evolutionary interaction switches. FEBS Lett. 579, 3342–3345 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Fuxreiter, M., Tompa, P. & Simon, I. Local structural disorder imparts plasticity on linear motifs. Bioinformatics 23, 950–956 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Iakoucheva, L.M. et al. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32, 1037–1049 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cox, C.J. et al. The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are natively unfolded. FEBS Lett. 527, 303–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Shoemaker, B.A., Portman, J.J. & Wolynes, P.G. Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl. Acad. Sci. USA 97, 8868–8873 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oldfield, C.J. et al. Flexible nets: disorder and induced fit in the associations of p53 and 14–3-3 with their partners. BMC Genomics 9 (suppl. 1), S1 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tompa, P., Szasz, C. & Buday, L. Structural disorder throws new light on moonlighting. Trends Biochem. Sci. 30, 484–489 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Reeves, R. & Beckerbauer, L. HMGI/Y proteins: flexible regulators of transcription and chromatin structure. Biochim. Biophys. Acta 1519, 13–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Tjian, R. & Maniatis, T. Transcriptional activation: a complex puzzle with few easy pieces. Cell 77, 5–8 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Davis, J.A., Takagi, Y., Kornberg, R.D. & Asturias, F.A. Structure of the yeast RNA polymerase II holoenzyme: mediator conformation and polymerase interaction. Mol. Cell 10, 409–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Kostek, S.A. et al. Molecular architecture and conformational flexibility of human RNA polymerase II. Structure 14, 1691–1700 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Hansen, J.C. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms and functions. Annu. Rev. Biophys. Biomol. Struct. 31, 361–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Hansen, J.C., Tse, C. & Wolffe, A.P. Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37, 17637–17641 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Ruthenburg, A.J., Li, H., Patel, D.J. & Allis, C.D. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clapier, C.R., Langst, G., Corona, D.F., Becker, P.B. & Nightingale, K.P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875–883 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xiao, H. et al. Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol. Cell 8, 531–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Fazzio, T.G., Gelbart, M.E. & Tsukiyama, T. Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo. Mol. Cell. Biol. 25, 9165–9174 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ferreira, H., Flaus, A. & Owen-Hughes, T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J. Mol. Biol. 374, 563–579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Baneres, J.L., Martin, A. & Parello, J. The N tails of histones H3 and H4 adopt a highly structured conformation in the nucleosome. J. Mol. Biol. 273, 503–508 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Hartlepp, K.F. et al. The histone fold subunits of Drosophila CHRAC facilitate nucleosome sliding through dynamic DNA interactions. Mol. Cell. Biol. 25, 9886–9896 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hamiche, A., Kang, J.G., Dennis, C., Xiao, H. & Wu, C. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. Proc. Natl. Acad. Sci. USA 98, 14316–14321 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smith, C.L., Horowitz-Scherer, R., Flanagan, J.F., Woodcock, C.L. & Peterson, C.L. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat. Struct. Biol. 10, 141–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Wu, P.Y., Ruhlmann, C., Winston, F. & Schultz, P. Molecular architecture of the S. cerevisiae SAGA complex. Mol. Cell 15, 199–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Huth, J.R. et al. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat. Struct. Biol. 4, 657–665 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, J. et al. Intrinsic disorder in transcription factors. Biochemistry 45, 6873–6888 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Hope, I.A., Mahadevan, S. & Struhl, K. Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein. Nature 333, 635–640 (1988).

    Article  CAS  PubMed  Google Scholar 

  62. Cress, W.D. & Triezenberg, S.J. Critical structural elements of the VP16 transcriptional activation domain. Science 251, 87–90 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Drysdale, C.M. et al. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol. Cell. Biol. 15, 1220–1233 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ng, K.P. et al. Multiple aromatic side chains within a disordered structure are critical for transcription and transforming activity of EWS family oncoproteins. Proc. Natl. Acad. Sci. USA 104, 479–484 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sugase, K., Dyson, H.J. & Wright, P.E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021–1025 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Ferreira, M.E. et al. Mechanism of transcription factor recruitment by acidic activators. J. Biol. Chem. 280, 21779–21784 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Zitzewitz, J.A., Ibarra-Molero, B., Fishel, D.R., Terry, K.L. & Matthews, C.R. Preformed secondary structure drives the association reaction of GCN4-p1, a model coiled-coil system. J. Mol. Biol. 296, 1105–1116 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Spolar, R.S. & Record, M.T. Jr. Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784 (1994); comment 263, 769–770 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Dames, S.A., Martinez-Yamout, M., De Guzman, R.N., Dyson, H.J. & Wright, P.E. Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response. Proc. Natl. Acad. Sci. USA 99, 5271–5276 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. De Guzman, R.N., Martinez-Yamout, M.A., Dyson, H.J. & Wright, P.E. Interaction of the TAZ1 domain of the CREB-binding protein with the activation domain of CITED2: regulation by competition between intrinsically unstructured ligands for non-identical binding sites. J. Biol. Chem. 279, 3042–3049 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Mujtaba, S. et al. Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol. Cell 13, 251–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Radhakrishnan, I. et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741–752 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Heery, D.M., Kalkhoven, E., Hoare, S. & Parker, M.G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Girdwood, D. et al. P300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 1043–1054 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Black, J.C., Choi, J.E., Lombardo, S.R. & Carey, M. A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol. Cell 23, 809–818 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Kornberg, R.D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Thompson, P.R. et al. Regulation of the p300 HAT domain via a novel activation loop. Nat. Struct. Mol. Biol. 11, 308–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Myers, L.C., Gustafsson, C.M., Hayashibara, K.C., Brown, P.O. & Kornberg, R.D. Mediator protein mutations that selectively abolish activated transcription. Proc. Natl. Acad. Sci. USA 96, 67–72 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Asturias, F.J., Jiang, Y.W., Myers, L.C., Gustafsson, C.M. & Kornberg, R.D. Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283, 985–987 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Taatjes, D.J., Naar, A.M., Andel, F. III, Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Taatjes, D.J., Schneider-Poetsch, T. & Tjian, R. Distinct conformational states of nuclear receptor-bound CRSP-Med complexes. Nat. Struct. Mol. Biol. 11, 664–671 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Chadick, J.Z. & Asturias, F.J. Structure of eukaryotic Mediator complexes. Trends Biochem. Sci. 30, 264–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Elmlund, H. et al. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc. Natl. Acad. Sci. USA 103, 15788–15793 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tóth-Petróczy, A. et al. Malleable machines in transcription regulation: the Mediator complex. PLoS Comput. Biol. (in the press).

  85. Takagi, Y. et al. Head module control of mediator interactions. Mol. Cell 23, 355–364 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Lariviere, L. et al. Structure and TBP binding of the Mediator head subcomplex Med8-Med18-Med20. Nat. Struct. Mol. Biol. 13, 895–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. van de Peppel, J. et al. Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol. Cell 19, 511–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Corden, J.L. Tails of RNA polymerase II. Trends Biochem. Sci. 15, 383–387 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Fabrega, C., Shen, V., Shuman, S. & Lima, C.D. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Mol. Cell 11, 1549–1561 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Bushnell, D.A., Westover, K.D., Davis, R.E. & Kornberg, R.D. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science 303, 983–988 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, H.T. & Hahn, S. Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PIC. Cell 119, 169–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Chung, W.H. et al. RNA polymerase II/TFIIF structure and conserved organization of the initiation complex. Mol. Cell 12, 1003–1013 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Yong, C. et al. Structure of the human transcription factor TFIIF revealed by limited proteolysis with trypsin. FEBS Lett. 435, 191–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Brown, C.J. et al. Evolutionary rate heterogeneity in proteins with long disordered regions. J. Mol. Evol. 55, 104–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Zor, T., De Guzman, R.N., Dyson, H.J. & Wright, P.E. Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb. J. Mol. Biol. 337, 521–534 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Lu, X. & Hansen, J.C. Identification of specific functional subdomains within the linker histone H10 C-terminal domain. J. Biol. Chem. 279, 8701–8707 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. McBryant, S.J., Krause, C. & Hansen, J.C. Domain organization and quaternary structure of the Saccharomyces cerevisiae silent information regulator 3 protein, Sir3p. Biochemistry 45, 15941–15948 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Szollosi, E. et al. Intrinsic structural disorder of DF31, a Drosophila protein of chromatin decondensation and remodeling activities. J. Proteome Res. 7, 2291–2299 (2008).

    Article  PubMed  Google Scholar 

  100. Radhakrishnan, I., Perez-Alvarado, G.C., Dyson, H.J. & Wright, P.E. Conformational preferences in the Ser133-phosphorylated and non-phosphorylated forms of the kinase inducible transactivation domain of CREB. FEBS Lett. 430, 317–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Hon, W.C. et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417, 975–978 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Cramer, P. et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288, 640–649 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.F. is supported by MRTN-CT-2005-019566 of the European FP6 and by the Bolyai János fellowship; P.T. is supported by Országos Tudományos Kutatási Alapprogramok NK 71582, ETT 245/2006; and I.S. is supported by Országos Tudományos Kutatási Alapprogramok K72569. V.N.U. is supported by the grants R01 LM007688-01A1 (to A.K. Dunker and V.N.U.) and GM071714-01A2 (to A.K. Dunker and V.N.U.) from the US National Institutes of Health. We gratefully acknowledge the support of the Indiana University, Purdue University at Indianapolis Signature Centers Initiative. J.C.H. is supported by US National Institutes of Health grants GM45916 and GM66834. F.J.A. is supported by funds from the US National Institute of General Medical Sciences and the Leukemia and Lymphoma Society of America. The authors are grateful to C. Oldfield for his contribution to Figure 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Fuxreiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuxreiter, M., Tompa, P., Simon, I. et al. Malleable machines take shape in eukaryotic transcriptional regulation. Nat Chem Biol 4, 728–737 (2008). https://doi.org/10.1038/nchembio.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.127

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing