Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction

Abstract

The spindle assembly checkpoint (SAC) is required to block sister chromatid separation until all chromosomes are properly attached to the mitotic apparatus. The SAC prevents cells from entering anaphase by inhibiting the ubiquitylation of cyclin B1 and securin by the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase. The target of the SAC is the essential APC/C activator Cdc20. It is unclear how the SAC inactivates Cdc20 but most current models suggest that Cdc20 forms a stable complex with the Mad2 checkpoint protein. Here we show that most Cdc20 is not in a complex with Mad2; instead Mad2 is required for Cdc20 to form a complex with another checkpoint protein, BubR1. We further show that during the SAC, the APC/C ubiquitylates Cdc20 to target it for degradation. Thus, ubiquitylation of human Cdc20 is not required to release it from the checkpoint complex, but to degrade it to maintain mitotic arrest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cdc20 is degraded in checkpoint-arrested cells.
Figure 2: Cdc20 degradation is dependent on APC/C activity and a functional SAC.
Figure 3: Cdc20 requires both APC/C- and Mad2-binding motifs to be degraded in the SAC.
Figure 4: Analysis of checkpoint complexes by gel-filtration chromatography.
Figure 5: A Cdc20 mutant without lysines overrides the SAC.
Figure 6: Dissociation of checkpoint proteins from Cdc20 does not require ubiquitylation of Cdc20.
Figure 7: Spindle checkpoint model.

Similar content being viewed by others

References

  1. Pines, J. Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol. 16, 55–63 (2006).

    Article  CAS  Google Scholar 

  2. Musacchio, A. & Salmon, E. D. The spindle assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  3. Hwang, L. H. et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science 279, 1041–1044 (1998).

    Article  CAS  Google Scholar 

  4. Kim, S. H., Lin, D. P., Matsumoto, S., Kitazono, A. & Matsumoto, T. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 279, 1045–1047 (1998).

    Article  CAS  Google Scholar 

  5. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656 (2006).

    Article  CAS  Google Scholar 

  6. Sironi, L. et al. Crystal structure of the tetrameric Mad1–Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. EMBO J. 21, 2496–2506 (2002).

    Article  CAS  Google Scholar 

  7. Mapelli, M., Massimiliano, L., Santaguida, S. & Musacchio, A. The mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 131, 730–743 (2007).

    Article  CAS  Google Scholar 

  8. Luo, X., Tang, Z., Rizo, J. & Yu, H. The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Mol. Cell 9, 59–71. (2002).

    Article  Google Scholar 

  9. Tang, Z., Bharadwaj, R., Li, B. & Yu, H. Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev. Cell 1, 227–237. (2001).

    Article  CAS  Google Scholar 

  10. Fang, G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol. Biol. Cell 13, 755–766 (2002).

    Article  CAS  Google Scholar 

  11. Reddy, S. K., Rape, M., Margansky, W. A. & Kirschner, M. W. Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature 446, 921–925 (2007).

    Article  CAS  Google Scholar 

  12. Stegmeier, F. et al. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446, 876–881 (2007).

    Article  CAS  Google Scholar 

  13. Pan, J. & Chen, R. H. Spindle checkpoint regulates Cdc20p stability in Saccharomyces cerevisiae. Genes Dev. 18, 1439–1451 (2004).

    Article  CAS  Google Scholar 

  14. King, E. M., van der Sar, S. J. & Hardwick, K. G. Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS ONE 2, e342 (2007).

    Article  Google Scholar 

  15. Clute, P. & Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nature Cell Biol. 1, 82–87 (1999).

    Article  CAS  Google Scholar 

  16. Brito, D. A. & Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006).

    Article  CAS  Google Scholar 

  17. Kallio, M. J., Beardmore, V. A., Weinstein, J. & Gorbsky, G. J. Rapid microtubule-independent dynamics of Cdc20 at kinetochores and centrosomes in mammalian cells. J. Cell Biol. 158, 841–847 (2002).

    Article  CAS  Google Scholar 

  18. Howell, B. J. et al. Spindle checkpoint protein dynamics at kinetochores in living cells. Curr. Biol. 14, 953–964 (2004).

    Article  CAS  Google Scholar 

  19. den Elzen, N. & Pines, J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol. 153, 121–136. (2001).

    Article  CAS  Google Scholar 

  20. Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–148 (2001).

    Article  CAS  Google Scholar 

  21. Hayes, M. J. et al. Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C. Nature Cell Biol. 8, 607–614 (2006).

    Article  CAS  Google Scholar 

  22. Schwab, M., Neutzner, M., Mocker, D. & Seufert, W. Yeast Hct1 recognizes the mitotic cyclin Clb2 and other substrates of the ubiquitin ligase APC. EMBO J. 20, 5165–5175. (2001).

    Article  CAS  Google Scholar 

  23. Vodermaier, H. C., Gieffers, C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J. M. TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1. Curr. Biol. 13, 1459–1468 (2003).

    Article  CAS  Google Scholar 

  24. Sudakin, V., Chan, G. K. & Yen, T. J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154, 925–936. (2001).

    Article  CAS  Google Scholar 

  25. Camasses, A., Bogdanova, A., Shevchenko, A. & Zachariae, W. The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. Mol. Cell 12, 87–100 (2003).

    Article  CAS  Google Scholar 

  26. Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol. 161, 267–280 (2003).

    Article  CAS  Google Scholar 

  27. Hardwick, K. G., Johnston, R. C., Smith, D. L. & Murray, A. W. MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. J. Cell Biol. 148, 871–882. (2000).

    Article  CAS  Google Scholar 

  28. Wolthuis, R. et al. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin a. Mol. Cell 30, 290–302 (2008).

    Article  CAS  Google Scholar 

  29. Acquaviva, C., Herzog, F., Kraft, C. & Pines, J. The anaphase promoting complex/cyclosome is recruited to centromeres by the spindle assembly checkpoint. Nature Cell Biol. 6, 892–898 (2004).

    Article  CAS  Google Scholar 

  30. Davenport, J., Harris, L. D. & Goorha, R. Spindle checkpoint function requires Mad2-dependent Cdc20 binding to the Mad3 homology domain of BubR1. Exp. Cell Res. 312, 1831–1842 (2006).

    Article  CAS  Google Scholar 

  31. Millband, D. N. & Hardwick, K. G. Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localizes to kinetochores in a Bub1p-, Bub3p-, and Mph1p-dependent manner. Mol. Cell. Biol. 22, 2728–2742 (2002).

    Article  CAS  Google Scholar 

  32. Garci-Higuera, I. et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nature Cell Biol. 10, 802–811 (2008).

    Article  CAS  Google Scholar 

  33. Meraldi, P., Draviam, V. M. & Sorger, P. K. Timing and checkpoints in the regulation of mitotic progression. Dev. Cell 7, 45–60 (2004).

    Article  CAS  Google Scholar 

  34. Brito, D. A., Yang, Z. & Rieder, C. L. Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied. J. Cell Biol. (2008).

  35. Di Fiore, B. & Pines, J. Emi1 is needed to couple DNA replication with mitosis but does not regulate activation of the mitotic APC/C. J. Cell Biol. 177, 425–437 (2007).

    Article  CAS  Google Scholar 

  36. Kodumal, S. J. et al. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc. Natl Acad. Sci. USA 101, 15573–15578 (2004).

    Article  CAS  Google Scholar 

  37. Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J. & Govindarajan, S. Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7, 285 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Daisuke Izawa for pioneering APC3 and APC11 siRNA depletion, Paola Marco for help with the BubR1 constructs, Stephen Taylor, Gowei Fang and Andrea Musacchio for reagents, Athanassios Giannis for dimethylanastron, Mercedes Pardo and Lu Yu of the Mass Spectroscopy group at the Sanger Centre for mass spectroscopy, and Andrea Musacchio and members of our laboratory for helpful discussions. M.Y. is particularly grateful to Takahiro Matsusaka for help with microscopy and microinjection. J.N. was supported by fellowships from the Carlsberg Foundation and the Danish Cancer Society, M.Y. was supported by a Yousef Jameel scholarship. This work was supported by a Program Grant from Cancer Research UK to J.P. (C29/A3211).

Author information

Authors and Affiliations

Authors

Contributions

J.N. performed the biochemical experiments; M.Y. performed the imaging experiments; J.M. constructed the Lys-less Cdc20 and control Cdc20 constructs; J.N., M.Y. and J.P. designed the experiments; J.P. wrote the paper with help from J.N. and M.Y.

Corresponding author

Correspondence to Jonathon Pines.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1254 kb)

Supplementary Information

Supplementary Movie 1 (MOV 630 kb)

Supplementary Information

Supplementary Movie 2 (MOV 2086 kb)

Supplementary Information

Supplementary Movie 3 (MOV 2564 kb)

Supplementary Information

Supplementary Movie 4 (MOV 1483 kb)

Supplementary Information

Supplementary Movie 5 (MOV 2619 kb)

Supplementary Information

Supplementary Movie 6 (MOV 2587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, J., Yekezare, M., Minshull, J. et al. The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat Cell Biol 10, 1411–1420 (2008). https://doi.org/10.1038/ncb1799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing