Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome architectures revealed by tethered chromosome conformation capture and population-based modeling

Abstract

We describe tethered conformation capture (TCC), a method for genome-wide mapping of chromatin interactions. By performing ligations on solid substrates rather than in solution, TCC substantially enhances the signal-to-noise ratio, thereby facilitating a detailed analysis of interactions within and between chromosomes. We identified a group of regions in each chromosome in human cells that account for the majority of interchromosomal interactions. These regions are marked by high transcriptional activity, suggesting that their interactions are mediated by transcriptional machinery. Each of these regions interacts with numerous other such regions throughout the genome in an indiscriminate fashion, partly driven by the accessibility of the partners. As a different combination of interactions is likely present in different cells, we developed a computational method to translate the TCC data into physical chromatin contacts in a population of three-dimensional genome structures. Statistical analysis of the resulting population demonstrates that the indiscriminate properties of interchromosomal interactions are consistent with the well-known architectural features of the human genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of TCC.
Figure 2: Tethering improves the signal-to-noise ratio of conformation capture.
Figure 3: Intrachromosomal interactions.
Figure 4: Interchromosomal interactions.
Figure 5: Coarse-graining of the contact frequency maps and structural representation of the genome.
Figure 6: Population-based analysis of chromosome territory localizations in the nucleus.

Similar content being viewed by others

Accession codes

Accessions

Sequence Read Archive

References

  1. Misteli, T. Beyond the sequence: cellular organization of genome function. Cell 128, 787–800 (2007).

    Article  CAS  Google Scholar 

  2. Branco, M.R. & Pombo, A. Chromosome organization: new facts, new models. Trends Cell Biol. 17, 127–134 (2007).

    Article  CAS  Google Scholar 

  3. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001).

    Article  CAS  Google Scholar 

  4. Boyle, S. et al. The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum. Mol. Genet. 10, 211–219 (2001).

    Article  CAS  Google Scholar 

  5. Cremer, M. et al. Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res. 9, 541–567 (2001).

    Article  CAS  Google Scholar 

  6. Branco, M.R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 4, e138 (2006).

    Article  Google Scholar 

  7. Sproul, D., Gilbert, N. & Bickmore, W.A. The role of chromatin structure in regulating the expression of clustered genes. Nat. Rev. Genet. 6, 775–781 (2005).

    Article  CAS  Google Scholar 

  8. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 10, 1453–1465 (2002).

    Article  CAS  Google Scholar 

  9. Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010).

    Article  CAS  Google Scholar 

  10. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  Google Scholar 

  11. Spilianakis, C.G. & Flavell, R.A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol. 5, 1017–1027 (2004).

    Article  CAS  Google Scholar 

  12. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  13. Wurtele, H. & Chartrand, P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res. 14, 477–495 (2006).

    Article  Google Scholar 

  14. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra and interchromosomal interactions. Nat. Genet. 38, 1341–1347 (2006).

    Article  CAS  Google Scholar 

  15. van Steensel, B. & Dekker, J. Genomics tools for unraveling chromosome architecture. Nat. Biotechnol. 28, 1089–1095 (2010).

    Article  CAS  Google Scholar 

  16. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    Article  CAS  Google Scholar 

  17. Cook, P.R. Predicting three-dimensional genome structure from transcriptional activity. Nat. Genet. 32, 347–352 (2002).

    Article  CAS  Google Scholar 

  18. Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G. & Cremer, T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8, 104–115 (2007).

    Article  CAS  Google Scholar 

  19. Misteli, T. Self-organization in the genome. Proc. Natl. Acad. Sci. USA 106, 6885–6886 (2009).

    Article  CAS  Google Scholar 

  20. Misteli, T. Protein dynamics: implications for nuclear architecture and gene expression. Science 291, 843–847 (2001).

    Article  CAS  Google Scholar 

  21. Simonis, M., Kooren, J. & de Laat, W. An evaluation of 3C-based methods to capture DNA interactions. Nat. Methods 4, 895–901 (2007).

    Article  CAS  Google Scholar 

  22. Alcobia, I., Quina, A.S., Neves, H., Clode, N. & Parreira, L. The spatial organization of centromeric heterochromatin during normal human lymphopoiesis: evidence for ontogenically determined spatial patterns. Exp. Cell Res. 290, 358–369 (2003).

    Article  CAS  Google Scholar 

  23. Sullivan, G.J. et al. Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J. 20, 2867–2877 (2001).

    Article  CAS  Google Scholar 

  24. Alcobia, I., Dilao, R. & Parreira, L. Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns. Blood 95, 1608–1615 (2000).

    CAS  PubMed  Google Scholar 

  25. Volpi, E.V. et al. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J. Cell Sci. 113, 1565–1576 (2000).

    CAS  PubMed  Google Scholar 

  26. Mahy, N.L., Perry, P.E., Gilchrist, S., Baldock, R.A. & Bickmore, W.A. Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J. Cell Biol. 157, 579–589 (2002).

    Article  CAS  Google Scholar 

  27. Mahy, N.L., Perry, P.E. & Bickmore, W.A. Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J. Cell Biol. 159, 753–763 (2002).

    Article  CAS  Google Scholar 

  28. Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature 450, 683–694 (2007).

    Article  CAS  Google Scholar 

  29. Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007).

    Article  CAS  Google Scholar 

  30. Bau, D. et al. The three-dimensional folding of the alpha-globin gene domain reveals formation of chromatin globules. Nat. Struct. Mol. Biol. 18, 107–114 (2011).

    Article  CAS  Google Scholar 

  31. Alber, F., Kim, M.F. & Sali, A. Structural characterization of assemblies from overall shape and subcomplex compositions. Structure 13, 435–445 (2005).

    Article  CAS  Google Scholar 

  32. Kreth, G., Finsterle, J., von Hase, J., Cremer, M. & Cremer, C. Radial arrangement of chromosome territories in human cell nuclei: a computer model approach based on gene density indicates a probabilistic global positioning code. Biophys. J. 86, 2803–2812 (2004).

    Article  CAS  Google Scholar 

  33. Tolhuis, B. et al. Interactions among polycomb domains are guided by chromosome architecture. PLoS Genet. 7, e1001343 (2011).

    Article  CAS  Google Scholar 

  34. Chotalia, M. & Pombo, A. Polycomb targets seek closest neighbours. PLoS Genet. 7, e1002031 (2011).

    Article  CAS  Google Scholar 

  35. Cook, P.R. The organization of replication and transcription. Science 284, 1790–1795 (1999).

    Article  CAS  Google Scholar 

  36. Cook, P.R. A model for all genomes: the role of transcription factories. J. Mol. Biol. 395, 1–10 (2010).

    Article  CAS  Google Scholar 

  37. Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42, 53–61 (2010).

    Article  CAS  Google Scholar 

  38. Lamond, A.I. & Spector, D.L. Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 4, 605–612 (2003).

    Article  CAS  Google Scholar 

  39. Kasowski, M. et al. Variation in transcription factor binding among humans. Science 328, 232–235 (2010).

    Article  CAS  Google Scholar 

  40. Kelley, L.A., Gardner, S.P. & Sutcliffe, M.J. An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Eng. 9, 1063–1065 (1996).

    Article  CAS  Google Scholar 

  41. Tanizawa, H. et al. Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res. 38, 8164–8177 (2010).

    Article  CAS  Google Scholar 

  42. Srivastava, S. & Chen, L. A two-parameter generalized Poisson model to improve the analysis of RNA-seq data. Nucleic Acids Res. 38, e170 (2010).

    Article  Google Scholar 

  43. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  Google Scholar 

  44. Sabo, P.J. et al. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat. Methods 3, 511–518 (2006).

    Article  CAS  Google Scholar 

  45. Beatty, B., Mai, S. & Squire, J. FISH: A Practical Approach. (Oxford University Press, Oxford, 2002).

  46. Gue, M., Messaoudi, C., Sun, J.S. & Boudier, T. Smart 3D-FISH: automation of distance analysis in nuclei of interphase cells by image processing. Cytometry A 67, 18–26 (2005).

    Article  Google Scholar 

  47. Alber, F., Forster, F., Korkin, D., Topf, M. & Sali, A. Integrating diverse data for structure determination of macromolecular assemblies. Annu. Rev. Biochem. 77, 443–477 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge P. Laird, J. Knowles and J. Aman and the USC Epigenome Center for assistance in high-throughput sequencing, M. Michael and A. Williams for assistance in confocal microscopy, N. Bottini and Q.-L. Ying and members of their laboratories for assistance in cell culture, A.D. Smith for access to cluster computing, I. Slaymaker for graphic design and the integrative modeling platform team for support. Structure calculations were done on USC HPCC. We also thank N. Arnheim, A.D. Smith, O. Aparicio, S. Forsburg, W. Li, M.S. Madhusudhan, K. Gong, S. Srivastava, S. Al-Bassam, M. Murphy, J. Peace and Z. Ostrow for useful discussions and comments on the manuscript. This work is supported by Human Frontier Science Program grant RGY0079/2009-C to F.A., Alfred P. Sloan Foundation grant to F.A.; US National Institutes of Health (NIH) grants GM064642 and GM077320 to L.C., NIH grant GM096089 to F.A. and NIH grant RR022220 to F.A. and L.C. F.A. is a Pew Scholar in Biomedical Sciences, supported by the Pew Charitable Trusts.

Author information

Authors and Affiliations

Authors

Contributions

R.K. and L.C. conceived the TCC technique and R.K. performed the experiments and analyzed the contact data. R.K. and N.J. performed the FISH experiments and analyzed the results. H.T. and F.A. conceived the modeling strategy, and R.K. and L.C. provided input and discussions. H.T. performed the modeling experiments and analysis. R.K., F.A., H.T. and L.C. wrote the manuscript. All authors commented on and revised the manuscript. F.A. and L.C. supervised the project.

Corresponding authors

Correspondence to Frank Alber or Lin Chen.

Ethics declarations

Competing interests

A provisional patent for TCC is under review.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1, 3 and 4, Supplementary Methods and Supplementary Figures 1–10 (PDF 28859 kb)

Supplementary Table 2

No title (XLS 625 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalhor, R., Tjong, H., Jayathilaka, N. et al. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat Biotechnol 30, 90–98 (2012). https://doi.org/10.1038/nbt.2057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2057

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research