Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Three regimes of extrasolar planet radius inferred from host star metallicities

Subjects

Abstract

Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods1. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen–helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates2,3, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Host star metallicities and three types of exoplanets with different composition.
Figure 2: The radius of transition from rocky to gaseous exoplanets.

References

  1. Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013)

    Article  ADS  Google Scholar 

  2. Marcy, G. W. et al. Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. Astrophys. J. Suppl. Ser. 210, 20 (2014)

    Article  ADS  Google Scholar 

  3. Weiss, L. M. & Marcy, G. W. The mass-radius relation for 65 exoplanets smaller than 4 Earth radii. Astrophys. J. 783, L6 (2014)

    Article  ADS  Google Scholar 

  4. Gonzalez, G. The stellar metallicity-giant planet connection. Mon. Not. R. Astron. Soc. 285, 403–412 (1997)

    Article  ADS  Google Scholar 

  5. Santos, N. C., Israelian, G. & Mayor, M. Chemical analysis of 8 recently discovered extra-solar planet host stars. Astron. Astrophys. 363, 228–238 (2000)

    ADS  CAS  Google Scholar 

  6. Fischer, D. A. & Valenti, J. The planet-metallicity correlation. Astrophys. J. 622, 1102–1117 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Buchhave, L. A. et al. An abundance of small exoplanets around stars with a wide range of metallicities. Nature 486, 375–377 (2012)

    Article  ADS  CAS  Google Scholar 

  8. Sousa, S. G., Santos, N. C., Israelian, G., Mayor, M. & Udry, S. Spectroscopic stellar parameters for 582 FGK stars in the HARPS volume-limited sample. Revising the metallicity-planet correlation. Astron. Astrophys. 533, A141 (2011)

    Article  ADS  Google Scholar 

  9. Sousa, S. G. et al. Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes. Astron. Astrophys. 487, 373–381 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Ghezzi, L. et al. Stellar parameters and metallicities of stars hosting Jovian and Neptunian mass planets: a possible dependence of planetary mass on metallicity. Astrophys. J. 720, 1290–1302 (2010)

    Article  ADS  CAS  Google Scholar 

  11. Everett, M. E., Howell, S. B., Silva, D. R. & Szkody, P. Spectroscopy of faint Kepler mission exoplanet candidate host stars. Astrophys. J. 771, 107 (2013)

    Article  ADS  Google Scholar 

  12. Batalha, N. M. et al. Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. Astrophys. J. Suppl. Ser. 204, 24 (2013)

    Article  ADS  Google Scholar 

  13. Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013)

    Article  ADS  Google Scholar 

  14. Batalha, N. M. et al. Kepler’s first rocky planet: Kepler-10b. Astrophys. J. 729, 27 (2011)

    Article  ADS  Google Scholar 

  15. Lissauer, J. J. et al. All six planets known to orbit Kepler-11 have low densities. Astrophys. J. 770, 131 (2013)

    Article  ADS  Google Scholar 

  16. Ida, S. & Lin, D. N. C. Toward a deterministic model of planetary formation. II. The formation and retention of gas giant planets around stars with a range of metallicities. Astrophys. J. 616, 567–572 (2004)

    Article  ADS  Google Scholar 

  17. Lin, D. N. C., Bodenheimer, P. & Richardson, D. C. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Lopez, E. D. & Fortney, J. J. Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition. Preprint at http://arxiv.org/abs/1311.0329 (2013)

  19. Hansen, B. M. S. & Murray, N. Migration then assembly: formation of Neptune-mass planets inside 1 AU. Astrophys. J. 751, 158 (2012)

    Article  ADS  Google Scholar 

  20. Chiang, E. & Laughlin, G. The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. Mon. Not. R. Astron. Soc. 431, 3444–3455 (2013)

    Article  ADS  Google Scholar 

  21. Hansen, B. M. S. & Murray, N. Testing in situ assembly with the Kepler planet candidate sample. Astrophys. J. 775, 53 (2013)

    Article  ADS  Google Scholar 

  22. Terquem, C. & Papaloizou, J. C. B. Migration and the formation of systems of hot super-Earths and Neptunes. Astrophys. J. 654, 1110–1120 (2007)

    Article  ADS  Google Scholar 

  23. McNeil, D. S. & Nelson, R. P. On the formation of hot Neptunes and super-Earths. Mon. Not. R. Astron. Soc. 401, 1691–1708 (2010)

    Article  ADS  Google Scholar 

  24. Goldreich, P. & Tremaine, S. The excitation of density waves at the Lindblad and corotation resonances by an external potential. Astrophys. J. 233, 857–871 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  25. Raymond, S. N. & Cossou, C. No universal minimum-mass extrasolar nebula: Evidence against in-situ accretion of systems of hot super-Earths. Preprint at http://arxiv.org/abs/1401.3743 (2014)

  26. Rafikov, R. R. Atmospheres of protoplanetary cores: critical mass for nucleated instability. Astrophys. J. 648, 666–682 (2006)

    Article  ADS  Google Scholar 

  27. Papaloizou, J. C. B. & Terquem, C. Critical protoplanetary core masses in protoplanetary disks and the formation of short-period giant planets. Astrophys. J. 521, 823–838 (1999)

    Article  ADS  Google Scholar 

  28. Yi, S. et al. Toward better age estimates for stellar populations: the Y2 isochrones for solar mixture. Astrophys. J. Suppl. Ser. 136, 417–437 (2001)

    Article  ADS  Google Scholar 

  29. Lissauer, J. J. et al. Architecture and dynamics of Kepler’s candidate multiple transiting planet systems. Astrophys. J. Suppl. Ser. 197, 8 (2011)

    Article  ADS  Google Scholar 

  30. Torres, G. et al. Improved spectroscopic parameters for transiting planet hosts. Astrophys. J. 757, 161 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

L.A.B. acknowledges support from the Harvard Origins of Life Initiative. M.B. acknowledges funding from the Danish National Research Foundation (grant number DNRF97) and from the European Research Council under ERC Consolidator grant agreement 616027- STARDUST2ASTEROIDS. D.W.L. acknowledges support from the Kepler Mission under NASA Cooperative Agreements NCC2-1390, NNX11AB99A and NNX13AB58A with the Smithsonian Astrophysical Observatory, and thanks the observers who helped obtain the TRES observations reported here, especially R. Stefanik, G. Esquerdo, P. Berlind and M. Calkins.

Author information

Authors and Affiliations

Authors

Contributions

L.A.B. led the project and developed the classification tools for the metallicity analysis. M.B., D.W.L. and D.S. contributed to the discussion of the theoretical implications of the data. L.A.B., D.W.L., W.D.C., M.E., H.I., D.J. and G.W.M. worked on gathering the spectroscopic observations. All authors discussed the results and commented on the manuscript. L.A.B. and M.B. wrote the paper with input from D.W.L. and D.S.

Corresponding author

Correspondence to Lars A. Buchhave.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data

This file contains Supplementary Data. This file was updated on 9 June 2014 to correct an error in the description. (TXT 58 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchhave, L., Bizzarro, M., Latham, D. et al. Three regimes of extrasolar planet radius inferred from host star metallicities. Nature 509, 593–595 (2014). https://doi.org/10.1038/nature13254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13254

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing