Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Network organization of the human autophagy system

Abstract

Autophagy, the process by which proteins and organelles are sequestered in autophagosomal vesicles and delivered to the lysosome/vacuole for degradation, provides a primary route for turnover of stable and defective cellular proteins. Defects in this system are linked with numerous human diseases. Although conserved protein kinase, lipid kinase and ubiquitin-like protein conjugation subnetworks controlling autophagosome formation and cargo recruitment have been defined, our understanding of the global organization of this system is limited. Here we report a proteomic analysis of the autophagy interaction network in human cells under conditions of ongoing (basal) autophagy, revealing a network of 751 interactions among 409 candidate interacting proteins with extensive connectivity among subnetworks. Many new autophagy interaction network components have roles in vesicle trafficking, protein or lipid phosphorylation and protein ubiquitination, and affect autophagosome number or flux when depleted by RNA interference. The six ATG8 orthologues in humans (MAP1LC3/GABARAP proteins) interact with a cohort of 67 proteins, with extensive binding partner overlap between family members, and frequent involvement of a conserved surface on ATG8 proteins known to interact with LC3-interacting regions in partner proteins. These studies provide a global view of the mammalian autophagy interaction landscape and a resource for mechanistic analysis of this critical protein homeostasis pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the autophagy interaction network (AIN).
Figure 2: Autophagy subnetwork maps.
Figure 3: The ATG8 subnetwork.
Figure 4: Specificity within the ATG8 subnetwork.
Figure 5: RNAi analysis of the autophagy interaction network.
Figure 6: Functional integration of the autophagy interaction network.

Similar content being viewed by others

References

  1. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008)

    Article  ADS  CAS  Google Scholar 

  2. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008)

    Article  CAS  Google Scholar 

  3. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Rev. Mol. Cell Biol. 10, 458–467 (2009)

    Article  CAS  Google Scholar 

  4. Kabeya, Y. et al. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell 16, 2544–2553 (2005)

    Article  CAS  Google Scholar 

  5. Mizushima, N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22, 132–139 (2010)

    Article  CAS  Google Scholar 

  6. Simonsen, A. & Tooze, S. A. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J. Cell Biol. 186, 773–782 (2009)

    Article  CAS  Google Scholar 

  7. Hanada, T. et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298–37302 (2007)

    Article  CAS  Google Scholar 

  8. Legakis, J. E., Yen, W. L. & Klionsky, D. J. A cycling protein complex required for selective autophagy. Autophagy 3, 422–432 (2007)

    Article  CAS  Google Scholar 

  9. Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009)

    Article  CAS  Google Scholar 

  10. Spiess, C., Meyer, A. S., Reissmann, S. & Frydman, J. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol. 14, 598–604 (2004)

    Article  CAS  Google Scholar 

  11. Wang, Z., Wilson, W. A., Fujino, M. A. & Roach, P. J. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol. Cell. Biol. 21, 5742–5752 (2001)

    Article  CAS  Google Scholar 

  12. Lippai, M. et al. SNF4Aγ, the Drosophila AMPK γ subunit is required for regulation of developmental and stress-induced autophagy. Autophagy 4, 476–486 (2008)

    Article  CAS  Google Scholar 

  13. Matsunaga, K. et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature Cell Biol. 11, 385–396 (2009)

    Article  CAS  Google Scholar 

  14. Zhong, Y. et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nature Cell Biol. 11, 468–476 (2009)

    Article  CAS  Google Scholar 

  15. Itakura, E., Kishi, C., Inoue, K. & Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19, 5360–5372 (2008)

    Article  CAS  Google Scholar 

  16. Sardiu, M. E. et al. Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proc. Natl Acad. Sci. USA 105, 1454–1459 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Schulman, B. A. & Harper, J. W. Ubiquitin-like protein activation: the apex for diverse signaling pathways. Nature Rev. Mol. Cell Biol. 10, 319–331 (2009)

    Article  CAS  Google Scholar 

  18. Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516 (2009)

    Article  CAS  Google Scholar 

  19. Kirkin, V., McEwan, D. G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol. Cell 34, 259–269 (2009)

    Article  CAS  Google Scholar 

  20. Noda, N. N. et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211–1218 (2008)

    Article  CAS  Google Scholar 

  21. Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51 (2009)

    Article  Google Scholar 

  22. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010)

    Article  CAS  Google Scholar 

  23. Mizushima, N. & Yoshimori, T. How to interpret LC3 immunoblotting. Autophagy 3, 542–545 (2007)

    Article  CAS  Google Scholar 

  24. Pankiv, S. et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 188, 253–269 (2010)

    Article  CAS  Google Scholar 

  25. Cardoso, C. M. et al. Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells. PLoS ONE 4, e4424 (2009)

    Article  ADS  Google Scholar 

  26. Wang, C. W., Stromhaug, P. E., Kauffman, E. J., Weisman, L. S. & Klionsky, D. J. Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J. Cell Biol. 163, 973–985 (2003)

    Article  CAS  Google Scholar 

  27. Kinchen, J. M. & Ravichandran, K. S. Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature 464, 778–782 (2010)

    Article  ADS  CAS  Google Scholar 

  28. Schnatwinkel, C. et al. The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms. PLoS Biol. 2, e261 (2004)

    Article  Google Scholar 

  29. Jung, C. H. et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009)

    Article  CAS  Google Scholar 

  30. Karnitz, L. M. & Felts, S. J. Cdc37 regulation of the kinome: when to hold 'em and when to fold 'em. Sci. STKE 2007, pe22 (2007)

    Article  Google Scholar 

  31. Lynch-Day, M. A. et al. Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc. Natl Acad. Sci. USA 107, 7811–7816 (2010)

    Article  ADS  CAS  Google Scholar 

  32. Sadler, K. C., Amsterdam, A., Soroka, C., Boyer, J. & Hopkins, N. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132, 3561–3572 (2005)

    Article  CAS  Google Scholar 

  33. Jeffries, T. R., Dove, S. K., Michell, R. H. & Parker, P. J. PtdIns-specific MPR pathway association of a novel WD40 repeat protein, WIPI49. Mol. Biol. Cell 15, 2652–2663 (2004)

    Article  CAS  Google Scholar 

  34. Jin, J., Arias, E. E., Chen, J., Harper, J. W. & Walter, J. C. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol. Cell 23, 709–721 (2006)

    Article  CAS  Google Scholar 

  35. Sakata, T. et al. Drosophila Nedd4 regulates endocytosis of notch and suppresses its ligand-independent activation. Curr. Biol. 14, 2228–2236 (2004)

    Article  CAS  Google Scholar 

  36. Kraft, C., Deplazes, A., Sohrmann, M. & Peter, M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nature Cell Biol. 10, 602–610 (2008)

    Article  CAS  Google Scholar 

  37. Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009)

    Article  CAS  Google Scholar 

  38. Shvets, E. & Elazar, Z. Flow cytometric analysis of autophagy in living mammalian cells. Methods Enzymol. 452, 131–141 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Dikic for discussions and for sharing unpublished data, D. Bowman and J. Ringeling for assistance with Acapela software, N. Perrimon, S. Mohr and M. Ocana for access to the Opera microscope, and N. Gray for Torin1. This work was supported by grants to J.W.H. from Millennium Pharmaceuticals, the National Institutes of Health, and the Paul F. Glenn Foundation on Aging. C.B. is a Humboldt Postdoctoral Fellow.

Author information

Authors and Affiliations

Authors

Contributions

C.B. and M.E.S. performed experiments, analysed data and co-wrote the paper. S.P.G. provided proteomic infrastructure support and interpreted data. J.W.H. directed the research, interpreted data and wrote the paper.

Corresponding author

Correspondence to J. Wade Harper.

Ethics declarations

Competing interests

J.W.H. is a consultant for Millennium Pharmaceuticals.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, References and Supplementary Figures S1-S13 with legends. (PDF 8978 kb)

Supplementary Table 1

This file contains the cDNA constructs. (XLS 31 kb)

Supplementary Table 2

This file contains the primary LC-MS/MS data for 65 baits in the autophagy interaction network. (XLS 5354 kb)

Supplementary Table 3

This file contains the primary LC-MS/MS data for the ATG8 sub-network with and without the C-terminal Gly residue. (Sheet 1 and 2). (XLS 758 kb)

Supplementary Table 4

This file contains the primary LC-MS/MS data for sub-network proteomic analysis with and without Torin 1 treatment. (Sheet 1 and 2). (XLS 2877 kb)

Supplementary Table 5

This file contains the siRNA and RT-PCR primer sequences used in this study. (XLS 60 kb)

Supplementary Table 6

This file contains the normalized average intensity spot signals/cell for the RNAi autophagosome formation screen. (XLS 99 kb)

Supplementary Table 7

This file contains the curation of genes lacking Gene Ontologyc Process descriptors (Sheet 2), as well as the GO categories employed for this analysis (Sheet 1). (XLS 97 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrends, C., Sowa, M., Gygi, S. et al. Network organization of the human autophagy system. Nature 466, 68–76 (2010). https://doi.org/10.1038/nature09204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09204

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing