Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oxidation of the Ediacaran Ocean

Abstract

Oxygenation of the Earth’s surface is increasingly thought to have occurred in two steps. The first step, which occurred 2,300 million years (Myr) ago, involved a significant increase in atmospheric oxygen concentrations and oxygenation of the surface ocean1,2. A further increase in atmospheric oxygen appears to have taken place during the late Neoproterozoic period3,4 (800–542 Myr ago). This increase may have stimulated the evolution of macroscopic multicellular animals and the subsequent radiation of calcified invertebrates4,5, and may have led to oxygenation of the deep ocean6. However, the nature and timing of Neoproterozoic oxidation remain uncertain. Here we present high-resolution carbon isotope and sulphur isotope records from the Huqf Supergroup, Sultanate of Oman, that cover most of the Ediacaran period (635 to 548 Myr ago). These records indicate that the ocean became increasingly oxygenated after the end of the Marinoan glaciation, and they allow us to identify three distinct stages of oxidation. When considered in the context of other records from this period7,8,9,10,11,12,13,14,15, our data indicate that certain groups of eukaryotic organisms appeared and diversified during the second and third stages of oxygenation. The second stage corresponds with the Shuram excursion in the carbon isotope record16 and seems to have involved the oxidation of a large reservoir of organic carbon suspended in the deep ocean6, indicating that this event may have had a key role in the evolution of eukaryotic organisms. Our data thus provide new insights into the oxygenation of the Ediacaran ocean and the stepwise restructuring of the carbon6,16,17 and sulphur cycles3,18,19 that occurred during this significant period of Earth’s history.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Huqf Supergroup showing geochronological, palaeobiological and chemostratigraphic contraints.
Figure 2: Compilation of Ediacaran δ 13 C carb from sections known to contain the Shuram excursion.

Similar content being viewed by others

References

  1. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, Princeton, NJ, 1984)

    Google Scholar 

  2. Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Canfield, D. E. & Teske, A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382, 127–132 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Knoll, A. H. & Carroll, S. B. Early animal evolution; emerging views from comparative biology and geology. Science 284, 2129–2137 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bowring, S. A., Grotzinger, J. P., Condon, D. J., Ramezani, J. & Newall, M. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am. J. Sci. (in the press).

  8. Grotzinger, J. P., Bowring, S. A., Saylor, B. Z. & Kaufman, A. J. Biostratigraphic and geochronological constraints on early animal evolution. Science 270, 598–604 (1995)

    Article  ADS  CAS  Google Scholar 

  9. Condon, D. et al. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Grey, K. Ediacaran Palynology of Australia Vol. 31 (Association of Australasian Paleontologists, Canberra, 2005)

    Google Scholar 

  11. Martin, M. W. et al. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science 288, 841–845 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Narbonne, G. M. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annu. Rev. Earth Planet. Sci. 33, 1–22 (2005)

    Article  Google Scholar 

  13. Calver, C. R. Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambr. Res. 100, 121–150 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Corsetti, F. A. & Kaufman, A. J. Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California. Geol. Soc. Am. Bull. 115, 916–932 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Workman, R. K., Grotzinger, J. P. & Hart, S. R. Constraints on Neoproterozoic ocean chemistry from δ13C and δ11B analyses of carbonates from the Witvlei and Nama Groups, Namibia. Geochim. Cosmochim. Acta 66, 847 (2002)

    Google Scholar 

  16. Burns, S. J. & Matter, A. Carbon isotopic record of the latest Proterozoic from Oman. Eclog. Geol. Helv. 86, 595–607 (1993)

    Google Scholar 

  17. Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. Terminal proterozoic reorganization of biogeochemical cycles. Nature 376, 53–56 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Canfield, D. E. The evolution of the Earth surface sulfur reservoir. Am. J. Sci. 304, 839–861 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Hurtgen, M. T. Sulfur cycling in the aftermath of a Neoproterozoic (Marinoan) snowball glaciation: Evidence for a syn-glacial sulfidic deep ocean. Earth Planet. Sci. Lett. 245, 551–570 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Amthor, J. E. et al. Extinction of Cloudina and Namacalathus at the Precambrian–Cambrian boundary in Oman. Geology 31, 431–434 (2003)

    Article  ADS  Google Scholar 

  21. McCarron, G. The Sedimentology and Chemostratigraphy of the Nafun Group, Huqf Supergroup, Oman. Thesis, Univ. Oxford. (2000)

  22. Bowring, S. A., Myrow, P. M., Landing, E. & Ramezani, J. Geochronological contraints on terminal Neoproterozoic events and the rise of Metazoans. Astrobiology 2, 112 (2002)

    Google Scholar 

  23. Le Guerroue, E., Allen, P. A. & Cozzi, A. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: The Neoproterozoic Shuram Formation (Nafun Group, Oman). Precambr. Res. 146, 68–92 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Melezhik, V. A., Fallick, A. E. & Pokrovsky, B. G. Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: The challenges to our understanding of the terrestrial carbon cycle. Precambr. Res. 137, 131–165 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean Ocean. Science 298, 2372–2374 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Kah, L. C., Lyons, T. W. & Frank, T. D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834–838 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Le Guerroue, E., Allen, P. A., Cozzi, A., Etienne, J. L. & Fanning, M. 50 million year duration negative carbon isotope excursion in the Ediacaran ocean. Terra Nova 18, 147–153 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Detmers, J., Bruchert, V., Habicht, K. S. & Kuever, J. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl. Environ. Microbiol. 67, 888–894 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnston, D. T. et al. Active microbial sulfur disproportionation in the Mesoproterozoic. Science 310, 1477–1479 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Hurtgen, M. T., Arthur, M. A. & Halverson, G. P. Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite. Geology 33, 41–44 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Canfield for use of laboratory facilities and discussions; C. Colonero, J. Fong and S. Studley for laboratory assistance; A. Bradley, D. Finkelstein, G. Love, B. McElroy, A. Maloof and W. Watters for comments; and T. Lyons for suggestions that improved the manuscript. We thank Petroleum Development Oman (PDO) for access to samples and support for this project, and the Oman Ministry of Oil and Gas for permission to publish this paper. Support was provided by PDO and the National Aeronautics and Space Administration. J.P.G. and D.A.F. were supported by the Agouron Institute. L.M.P. was supported by a NASA Astrobiology Institute grant. R.E.S. was supported by an NSF Biocomplexity grant and a NASA Exobiology grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Fike.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures 1–3 and also a discussion of lithostratigraphy, diagenesis, isotopic trends and Supplementary Methods. (DOC 2778 kb)

Supplementary Table

This file is excel spreadsheet containing the entire data presented in the paper. (XLS 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fike, D., Grotzinger, J., Pratt, L. et al. Oxidation of the Ediacaran Ocean. Nature 444, 744–747 (2006). https://doi.org/10.1038/nature05345

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05345

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing