Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution of the continental crust

Abstract

The continental crust covers nearly a third of the Earth’s surface. It is buoyant—being less dense than the crust under the surrounding oceans—and is compositionally evolved, dominating the Earth’s budget for those elements that preferentially partition into silicate liquid during mantle melting. Models for the differentiation of the continental crust can provide insights into how and when it was formed, and can be used to show that the composition of the basaltic protolith to the continental crust is similar to that of the average lower crust. From the late Archaean to late Proterozoic eras (some 3–1 billion years ago), much of the continental crust appears to have been generated in pulses of relatively rapid growth. Reconciling the sedimentary and igneous records for crustal evolution indicates that it may take up to one billion years for new crust to dominate the sedimentary record. Combining models for the differentiation of the crust and the residence time of elements in the upper crust indicates that the average rate of crust formation is some 2–3 times higher than most previous estimates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trace-element ratios and abundances.
Figure 2: Generation of continental crust through time as estimated from different approaches.
Figure 3: Histogram of detrital and inherited zircon crystallization ages from southeast Australia overlain with crust formation ages inferred from the Hf-O isotope compositions of the same grains.
Figure 4: Hf and U-Pb model ages.
Figure 5: The relationship between the residence time of elements in the upper crust and the annual rates of crust generation.

Similar content being viewed by others

References

  1. Lowe, D. R. & Tice, M. M. Geologic evidence for Archaean atmospheric and climatic evolution: fluctuating levels of CO2, CH4 and O2, with an overriding tectonic control. Geology 32, 493–496 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Kramers, J. D. Global modelling of continent formation and destruction through geological time and implications for CO2 drawdown in the Archaean Eon. Spec. Publ. Geol. Soc. Lond. 199, 259–274 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Rudnick, R. L. & Gao, S. in The Crust (ed. Rudnick, R. L.) 1–64 (Treatise in Geochemistry, Vol. 3, Elsevier, Amsterdam, 2003)

  4. Armstrong, R. L. Radiogenic isotopes: the case for crustal recycling on a near steady state no-continental-growth model. Phil. Trans. R. Soc. Lond. A 301, 443–472 (1981)

    Article  ADS  CAS  Google Scholar 

  5. Fyfe, W. S. The evolution of the Earth’s crust: modern plate tectonics to ancient hot spot tectonics?. Chem. Geol. 23, 89–114 (1978)

    Article  ADS  CAS  Google Scholar 

  6. Hurley, P. M. & Rand, J. R. Pre-drift continental nuclei. Science 164, 1229–1242 (1969)

    Article  ADS  CAS  Google Scholar 

  7. Allègre, C. J. & Lewin, E. Chemical structure and history of the Earth: evidence from global non-linear inversion of isotopic data in a three-box model. Earth Planet. Sci. Lett. 96, 61–88 (1989)

    Article  ADS  Google Scholar 

  8. Moorbath, S. Age and isotope evidence for the evolution of the continental crust. Phil. Trans. R. Soc. Lond. A 288, 401–413 (1978)

    Article  ADS  CAS  Google Scholar 

  9. O’Nions, R. K., Evensen, N. M. & Hamilton, P. J. Geochemical modelling of mantle differentiation and crustal growth. J. Geophys. Res. 84, 6091–6101 (1979)

    Article  ADS  Google Scholar 

  10. Jacobsen, S. & Wasserburg, G. J. The mean age of mantle and crustal reservoirs. J. Geophys. Res. 84, 7411–7427 (1979)

    Article  ADS  CAS  Google Scholar 

  11. Kramers, J. D. & Tolstikhin, I. N. Two major terrestrial Pb isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chem. Geol. 139, 75–110 (1997)

    Article  ADS  CAS  Google Scholar 

  12. Albarède, F. & Brouxel, M. The Sm/Nd secular evolution of the continental crust and the depleted mantle. Earth Planet. Sci. Lett. 82, 25–35 (1987)

    Article  ADS  Google Scholar 

  13. Rudnick, R. L. Making continental crust. Nature 378, 573–578 (1995)

    Article  ADS  Google Scholar 

  14. Taylor, S. R. & McLennan, S. M. The Continental Crust: Its Composition and Evolution (Blackwell, Malden, MA, 1985)

  15. Albarède, F. The growth of continental crust. Tectonophysics 296, 1–14 (1998)

    Article  ADS  Google Scholar 

  16. Arculus, R. J. Origins of the continental crust. J. Proc. R. Soc. New South Wales 132, 83–110 (1999)

    Google Scholar 

  17. Kemp, A. I. S. & Hawkesworth, C. J. in The Crust (ed. Rudnick, R. L.) 349–410 (Treatise in Geochemistry, Vol. 3, Elsevier, Amsterdam, 2003)

  18. Plank, T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of continents. J. Petrol. 46, 921–944 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Hawkesworth, C. J. & Kemp, A. I. S. The differentiation and rates of generation of the continental crust. Chem. Geol. 226, 134–143 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Turner, S. P. et al. Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes. Phil. Trans. R. Soc. Lond. A 358, 1443–1464 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Barth, M., McDonough, W. F. & Rudnick, R. L. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol. 165, 197–213 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Sun, S.-s. McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Spec. Publ. Geol. Soc. Lond. 42, 313–345 (1989)

    Article  Google Scholar 

  23. Plank, T. & Langmuir, C. H. The geochemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W. & van Calsteren, P. U-Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science 276, 551–555 (1997)

    Article  CAS  Google Scholar 

  25. Rudnick, R. L. & Fountain, D. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995)

    Article  ADS  Google Scholar 

  26. Martin, H. in Archaean Crustal Evolution (ed. Condie, K. C.) 205–260 (Elsevier, Amsterdam, 1994)

  27. Rapp, R. P. & Watson, E. B. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J. Petrol. 36, 891–931 (1995)

    Article  ADS  CAS  Google Scholar 

  28. Condie, K. C. in Archaean Crustal Evolution (ed. Condie, K. C.) 85–120 (Elsevier, Amsterdam, 1994)

  29. Vervoort, J. D. & Patchett, P. J. Behaviour of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochim. Cosmochim. Acta 60, 3717–3723 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Vervoort, J. D. et al. Hf-Nd isotopic evolution of the lower crust. Earth Planet. Sci. Lett. 181, 115–129 (2000)

    Article  ADS  CAS  Google Scholar 

  31. Kay, R. W. & Kay, S. M. Creation and destruction of lower continental crust. Geol. Rundsch. 80, 259–278 (1991)

    Article  ADS  CAS  Google Scholar 

  32. Kay, R. W. & Kay, S. M. Delamination and delamination magmatism. Tectonophysics 219, 177–189 (1993)

    Article  ADS  Google Scholar 

  33. Jull, M. & Kelemen, P. B. On the conditions for lower crustal convective instability. J. Geophys. Res. 106, 6423–6446 (2001)

    Article  ADS  CAS  Google Scholar 

  34. Ellam, R. M. & Hawkesworth, C. J. Is average continental crust generated at subduction zones?. Geology 16, 314–317 (1988)

    Article  ADS  CAS  Google Scholar 

  35. Arndt, N. T. & Goldstein, S. L. An open boundary between lower continental crust and mantle: its role in crust formation and crustal cycling. Tectonophysics 161, 201–212 (1989)

    Article  ADS  CAS  Google Scholar 

  36. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997)

    Article  ADS  CAS  Google Scholar 

  37. Petford, N. & Atherton, M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J. Petrol. 37, 1491–1521 (1996)

    Article  ADS  CAS  Google Scholar 

  38. Voshage, H. et al. Isotopic evidence from the Ivrea Zone for a hybrid lower crust formed by magmatic underplating. Nature 347, 731–736 (1990)

    Article  ADS  CAS  Google Scholar 

  39. Annen, C. & Sparks, R. S. J. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet. Sci. Lett. 203, 937–955 (2002)

    Article  ADS  CAS  Google Scholar 

  40. Bergantz, G. W. & Dawes, R. in Magmatic Systems (ed. Ryan, M. P.) 291–317 (Academic, San Diego, CA, 1994)

  41. Zandt, G. et al. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431, 41–46 (2004)

    Article  ADS  CAS  Google Scholar 

  42. Moore, V. M. & Wiltschko, D. V. Syncollisional delamination and tectonic wedge development in convergent orogens. Tectonics 23 doi: 10.1029/2002TC001430 (2004)

  43. McLennan, S. M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2 doi: 10.1029/2000GC000109 (2001)

  44. Allègre, C. J. & Rousseau, D. The growth of continents through geological time studied by Nd isotope analysis of shales. Earth Planet. Sci. Lett. 67, 19–34 (1984)

    Article  ADS  Google Scholar 

  45. O’Nions, R. K., Hamilton, P. J. & Hooker, P. J. A Nd isotope investigation of sediments related to crustal development in the British Isles. Earth Planet. Sci. Lett. 63, 229–240 (1983)

    Article  ADS  Google Scholar 

  46. Davies, G., Gledhill, A. & Hawkesworth, C. Upper crustal recycling in southern Britain: evidence from Nd and Sr isotopes. Earth Planet. Sci. Lett. 75, 1–12 (1985)

    Article  ADS  CAS  Google Scholar 

  47. McCulloch, M. T. & Bennett, V. C. Progressive growth of the Earth’s continental crust and depleted mantle: geochemical constraints. Geochim. Cosmochim. Acta 58, 4717–4738 (1994)

    Article  ADS  CAS  Google Scholar 

  48. Condie, K. C. Episodic continental growth and supercontinents: a mantle avalanche connection?. Earth Planet. Sci. Lett. 163, 97–108 (1998)

    Article  ADS  CAS  Google Scholar 

  49. Boher, M., Abouchami, W., Michard, A., Albarede, F. & Arndt, N. T. Crustal growth in West Africa at 2.1 Ga. J. Geophys. Res. 97, 345–369 (1992)

    Article  ADS  CAS  Google Scholar 

  50. Stein, M. & Hofmann, A. W. Mantle plumes and episodic crustal growth. Nature 372, 63–68 (1994)

    Article  ADS  CAS  Google Scholar 

  51. Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 doi:10.1007/s00410-005-0025-8. (2005)

    Article  ADS  CAS  Google Scholar 

  52. Amelin, Y., Lee, D-G., Halliday, A. N. & Pidgeon, R. T. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252–255 (1999)

    Article  ADS  CAS  Google Scholar 

  53. Bodet, F. & Scharer, U. Evolution of the SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers. Geochim. Cosmochim. Acta 64, 2067–2091 (2000)

    Article  ADS  CAS  Google Scholar 

  54. Vervoort, J. D., Patchett, P. J., Gehrels, G. E. & Nutman, A. P. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 379, 624–627 (1996)

    Article  ADS  CAS  Google Scholar 

  55. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001)

    Article  ADS  CAS  Google Scholar 

  56. Harrison, T. M. et al. Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga. Science 310, 1947–1950 (2005)

    Article  ADS  CAS  Google Scholar 

  57. Ireland, T. R. & Williams, I. S. in Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.) 215–238 (Reviews in Mineralogy and Geochemistry Vol. 53, Mineralogical Society of America, Washington DC, 2003)

  58. Valley, J. W., Chiarenzelli, J. R. & McLelland, J. M. Oxygen isotope geochemistry of zircon. Earth Planet. Sci. Lett. 126, 187–206 (1994)

    Article  ADS  CAS  Google Scholar 

  59. Blichert-Toft, J., Albarède, F., Rosing, M., Frei, R. & Bridgwater, D. The Nd and Hf isotopic evolution of the mantle through the Archean. Results from the Isua supracrustals, West Greenland, and from the Birimian terranes of West Africa. Geochim. Cosmochim. Acta 63, 3901–3914 (1999)

    Article  ADS  CAS  Google Scholar 

  60. Moorbath, S., Whitehouse, M. J. & Kamber, B. S. Extreme Nd-isotope heterogeneity in the early Archaean — fact or fiction?. Chem. Geol. 135, 213–231 (1997)

    Article  ADS  CAS  Google Scholar 

  61. Patchett, J. P., Kouvo, O., Hedge, C. E. & Tatsumoto, M. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib. Mineral. Petrol. 78, 279–297 (1981)

    Article  CAS  Google Scholar 

  62. Knudsen, T-L., Griffin, W. L., Hartz, E. H., Andresen, A. & Jackson, S. E. In situ hafnium and lead isotope analysis of detrital zircons from the Devonian sedimentary basin of NE Greenland: a record of repeated crustal reworking. Contrib. Mineral. Petrol. 141, 83–94 (2001)

    Article  ADS  CAS  Google Scholar 

  63. Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J. & O’Reilly, S. Y. Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambr. Res. 131, 231–282 (2004)

    Article  ADS  CAS  Google Scholar 

  64. Condie, K. C., Beyer, E., Belousva, E., Griffin, W. L. & O’Reilly, S. Y. U-Pb isotopic ages and Hf isotopic composition of single zircons: the search for juvenile Precambrian continental crust. Precambr. Res. 139, 42–100 (2005)

    Article  ADS  CAS  Google Scholar 

  65. Hawkesworth, C. J. & Kemp, A. I. S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem. Geol. 226, 144–162 (2006)

    Article  ADS  CAS  Google Scholar 

  66. Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A. & Kinny, P. D. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotope ratios. Nature 439, 580–583 (2006)

    Article  ADS  CAS  Google Scholar 

  67. Rudnick, R. L. Growing from below. Nature 347, 711–712 (1990)

    Article  ADS  Google Scholar 

  68. Reymer, A. & Schubert, G. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3, 63–77 (1984)

    Article  ADS  Google Scholar 

  69. Clift, P. & Vannuchi, P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, 1–31 (2004)

    Article  Google Scholar 

  70. von Huene, R. & Scholl, D. W. Observations at convergent margin concerning sediment subduction, subduction erosion and the growth of the continental crust. Rev. Geophys. 29, 279–316 (1991)

    Article  ADS  Google Scholar 

  71. Davies, G. F. Punctuated tectonic evolution of the Earth. Earth Planet. Sci. Lett. 136, 363–379 (1995)

    Article  ADS  CAS  Google Scholar 

  72. Bowring, S. A. & Housh, T. The Earth’s early evolution. Science 269, 1535–1540 (1995)

    Article  ADS  CAS  Google Scholar 

  73. Vervoort, J. D. & Blichert-Toft, J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta 63, 533–556 (1999)

    Article  ADS  CAS  Google Scholar 

  74. Storey, C. D., Jeffries, T. E. & Smith, M. Common lead-corrected laser ablation ICP-MS U-Pb systematics and geochronology of titanite. Chem. Geol. 227, 37–52 (2006)

    Article  ADS  CAS  Google Scholar 

  75. Elliott, T. E., Jeffcoate, A. & Bouman, C. The terrestrial Li isotope cycle: light weight constraints on mantle convection. Earth Planet. Sci. Lett. 220, 231–245 (2004)

    Article  ADS  CAS  Google Scholar 

  76. Jaupart, C. & Mareschal, J-C. in The Crust (ed. Rudnick, R. L.) 65–84 (Treatise in Geochemistry, Vol. 3, Elsevier, Amsterdam, 2003)

  77. Collerson, K. D. & Kamber, B. S. Evolution of the continents and the atmosphere. Science 283, 1519–1522 (1999)

    Article  ADS  CAS  Google Scholar 

  78. Taylor, S. R. & McLennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Blundy, T. Elliott, K. Gallagher, G. Helffrich, J. Kramers and S. Turner for many discussions on these and related topics, and for reading early versions of the manuscript. R. Arculus and J. Vervoort provided comments and suggestions that greatly improved the paper. The analytical work relied heavily on the enthusiasm and expertise of the Edinburgh Ion Microprobe Facility, and of C. Coath and G. Foster in Bristol. Author Contributions Both authors contributed equally to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Hawkesworth.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawkesworth, C., Kemp, A. Evolution of the continental crust. Nature 443, 811–817 (2006). https://doi.org/10.1038/nature05191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05191

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing