Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans

Abstract

The worm Caenorhabditis elegans is a model system for studying many aspects of biology, including host responses to bacterial pathogens1,2, but it is not known to support replication of any virus. Plants and insects encode multiple Dicer enzymes that recognize distinct precursors of small RNAs and may act cooperatively3,4,5,6,7. However, it is not known whether the single Dicer of worms and mammals is able to initiate the small RNA-guided RNA interference (RNAi) antiviral immunity as occurs in plants8 and insects9. Here we show complete replication of the Flock house virus (FHV) bipartite, plus-strand RNA genome in C. elegans. We show that FHV replication in C. elegans triggers potent antiviral silencing that requires RDE-1, an Argonaute protein10,11 essential for RNAi mediated by small interfering RNAs (siRNAs) but not by microRNAs. This immunity system is capable of rapid virus clearance in the absence of FHV B2 protein, which acts as a broad-spectrum RNAi inhibitor9,12 upstream of rde-1 by targeting the siRNA precursor. This work establishes a C. elegans model for genetic studies of animal virus–host interactions and indicates that mammals might use a siRNA pathway as an antiviral response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Replication and silencing of FHV in C. elegans.
Figure 2: FHV RNAi suppressor is active in rde-1 worms.
Figure 3: FHV B2 is a dsRNA-binding protein and inhibits siRNA production in vitro.

Similar content being viewed by others

References

  1. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mahajan-Miklos, S., Tan, M. W., Rahme, L. G. & Ausubel, F. M. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell 96, 47–56 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, 642–652 (2004)

    Article  CAS  Google Scholar 

  5. Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Tomari, Y. & Zamore, P. D. Perspective: machines for RNAi. Genes Dev. 19, 517–529 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Li, H. W., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Li, W. X. et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc. Natl Acad. Sci. USA 101, 1350–1355 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ball, L. A. & Johnson, K. L. Reverse genetics of nodaviruses. Adv. Virus Res. 53, 229–244 (1999)

    Article  CAS  PubMed  Google Scholar 

  14. Grishok, A., Sinskey, J. L. & Sharp, P. A. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev. 19, 683–696 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vastenhouw, N. L. & Plasterk, R. H. RNAi protects the Caenorhabditis elegans germline against transposition. Trends Genet. 20, 314–319 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Silhavy, D. & Burgyan, J. Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci. 9, 76–83 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Li, W. X. & Ding, S. W. Viral suppressors of RNA silencing. Curr. Opin. Biotechnol. 12, 150–154 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. Voinnet, O. Induction and suppression of RNA silencing: insights from viral infections. Nature Rev. Genet. 6, 206–220 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Ding, S. W., Li, H., Lu, R., Li, F. & Li, W. X. RNA silencing: a conserved antiviral immunity of plants and animals. Virus Res. 102, 109–115 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Lecellier, C. H. et al. A cellular microRNA directs antiviral immunity in human cells. Science 308, 557–560 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Lee, W. M. & Ahlquist, P. Membrane synthesis, specific lipid requirements, and localized lipid composition changes associated with a positive-strand RNA virus RNA replication protein. J. Virol. 77, 12819–12828 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stringham, E. G., Dixon, D. K., Jones, D. & Candido, E. P. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. Mol. Biol. Cell 3, 221–233 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maduro, M. F., Meneghini, M. D., Bowerman, B., Broitman-Maduro, G. & Rothman, J. H. Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3β homolog is mediated by MED-1 and -2 in C. elegans. Mol. Cell 7, 475–485 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Timmons, L., Court, D. L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Silhavy, D. et al. A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J. 21, 3070–3080 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank X. Huang for recommending the use of pPD49.83, and the Caenorhabditis Genetics Center funded by the National Center for Research Resources of the National Institutes of Health for some of the strains used in this work. This project was supported by an NIH grant and USDA National Research Initiative Competitive Grants Program awards (to S.W.D.) and UC Riverside startup funds (to M.M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Ding.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, R., Maduro, M., Li, F. et al. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436, 1040–1043 (2005). https://doi.org/10.1038/nature03870

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03870

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing