Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrabithorax is required for membranous wing identity in the beetle Tribolium castaneum

Abstract

The two pairs of wings that are characteristic of ancestral pterygotes (winged insects) have often undergone evolutionary modification. In the fruitfly, Drosophila melanogaster, differences between the membranous forewings and the modified hindwings (halteres) depend on the Hox gene Ultrabithorax (Ubx). The Drosophila forewings develop without Hox input, while Ubx represses genes that are important for wing development, promoting haltere identity1,2. However, the idea that Hox input is important to the morphologically specialized wing derivatives such as halteres, and not the more ancestral wings, requires examination in other insect orders. In beetles, such as Tribolium castaneum, it is the forewings that are modified (to form elytra), while the hindwings retain a morphologically more ancestral identity. Here we show that in this beetle Ubx ‘de-specializes’ the hindwings, which are transformed to elytra when the gene is knocked down. We also show evidence that elytra result from a Hox-free state, despite their diverged morphology. Ubx function in the hindwing seems necessary for a change in the expression of spalt, iroquois and achaete-scute homologues from elytron-like to more typical wing-like patterns. This counteracting effect of Ubx in beetle hindwings represents a previously unknown mode of wing diversification in insects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Function of Hox genes in fore- and hindwing differentiation in insects.
Figure 2: RNAi phenotypes of Hox genes in Tribolium.
Figure 3: Wing genes' expression in hindwing and elytron disc.

Similar content being viewed by others

References

  1. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978)

    Article  ADS  CAS  Google Scholar 

  2. Weatherbee, S. D., Halder, G., Kim, J., Hudson, A. & Carroll, S. Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere. Genes Dev. 12, 1474–1482 (1998)

    Article  CAS  Google Scholar 

  3. Carroll, S. B., Weatherbee, S. D. & Langeland, J. A. Homeotic genes and the regulation and evolution of insect wing number. Nature 375, 58–61 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Struhl, G. Genes controlling segmental specification in the Drosophila thorax. Proc. Natl Acad. Sci. USA 79, 7380–7384 (1982)

    Article  ADS  CAS  Google Scholar 

  5. Weatherbee, S. D. et al. Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Curr. Biol. 9, 109–115 (1999)

    Article  CAS  Google Scholar 

  6. Warren, R. W., Nagy, L., Selegue, J., Gates, J. & Carroll, S. Evolution of homeotic gene regulation and function in flies and butterflies. Nature 372, 458–461 (1994)

    Article  ADS  CAS  Google Scholar 

  7. Kelsh, R., Weinzierl, R. O., White, R. A. & Akam, M. Homeotic gene expression in the locust Schistocerca: an antibody that detects conserved epitopes in Ultrabithorax and abdominal-A proteins. Dev. Genet. 15, 19–31 (1994)

    Article  CAS  Google Scholar 

  8. Curtis, C. D. et al. Molecular characterization of Cephalothorax, the Tribolium ortholog of Sex combs reduced. Genesis 30, 12–20 (2001)

    Article  CAS  Google Scholar 

  9. Beeman, R. W. A homeotic gene cluster in the red flour beetle. Nature 327, 247–249 (1987)

    Article  ADS  Google Scholar 

  10. Beeman, R. W., Stuart, J. J., Haas, M. S. & Denell, R. E. Genetic analysis of the homeotic gene complex (HOM-C) in the beetle Tribolium castaneum. Dev. Biol. 133, 196–209 (1989)

    Article  CAS  Google Scholar 

  11. Brown, S. J. et al. Sequence of the Tribolium castaneum homeotic complex: the region corresponding to the Drosophila melanogaster Antennapedia complex. Genetics 160, 1067–1074 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stuart, J. J., Brown, S. J., Beeman, R. W. & Denell, R. E. A deficiency of the homeotic complex of the beetle Tribolium. Nature 350, 72–74 (1991)

    Article  ADS  CAS  Google Scholar 

  13. Bennett, R. L., Brown, S. J. & Denell, R. E. Molecular and genetic analysis of the Tribolium Ultrabithorax ortholog, Ultrathorax. Dev. Genes Evol. 209, 608–619 (1999)

    Article  CAS  Google Scholar 

  14. Tomoyasu, Y. & Denell, R. E. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev. Genes Evol. 214, 575–578 (2004)

    Article  CAS  Google Scholar 

  15. Lorenzen, M. D. et al. piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol. Biol. 12, 433–440 (2003)

    Article  CAS  Google Scholar 

  16. El-Kifl, A. H. Morphology of the adult Tribolium confusum Duv. and its differentiation from Tribolium (stene) castaneum Herbst. Bull. Soc. Fouad 1er Entom. 37, 173–249 (1953)

    Google Scholar 

  17. de Celis, J. F., Barrio, R. & Kafatos, F. C. A gene complex acting downstream of dpp in Drosophila wing morphogenesis. Nature 381, 421–424 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Sanchez-Salazar, J. et al. The Tribolium decapentaplegic gene is similar in sequence, structure, and expression to the Drosophila dpp gene. Dev. Genes Evol. 206, 237–246 (1996)

    Article  CAS  Google Scholar 

  19. Grimm, S. & Pflugfelder, G. O. Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless. Science 271, 1601–1604 (1996)

    Article  ADS  CAS  Google Scholar 

  20. Gomez-Skarmeta, J. L., Diez del Corral, R., de la Calle-Mustienes, E., Ferre-Marco, D. & Modolell, J. araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell 85, 95–105 (1996)

    Article  CAS  Google Scholar 

  21. Wheeler, S. R., Carrico, M. L., Wilson, B. A., Brown, S. J. & Skeath, J. B. The expression and function of the achaete-scute genes in Tribolium castaneum reveals conservation and variation in neural pattern formation and cell fate specification. Development 130, 4373–4381 (2003)

    Article  CAS  Google Scholar 

  22. Campuzano, S. et al. Molecular genetics of the achaete-scute gene complex of D. melanogaster. Cell 40, 327–338 (1985)

    Article  CAS  Google Scholar 

  23. Sturtevant, M. A., Biehs, B., Marin, E. & Bier, E. The spalt gene links the A/P compartment boundary to a linear adult structure in the Drosophila wing. Development 124, 21–32 (1997)

    CAS  PubMed  Google Scholar 

  24. de Celis, J. F. & Barrio, R. Function of the spalt/spalt-related gene complex in positioning the veins in the Drosophila wing. Mech. Dev. 91, 31–41 (2000)

    Article  CAS  Google Scholar 

  25. Abouheif, E. & Wray, G. A. Evolution of the gene network underlying wing polyphenism in ants. Science 297, 249–252 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Beeman, R. W., Brown, S. J., Stuart, J. J. & Denell, R. E. in Molecular Insect Science (eds Hagedorn, H. H., Hildebrannd, J. G., Kidwell, M. G. & Law, J. H.) 21–29 (Plenum, New York, 1990)

    Book  Google Scholar 

  27. Beeman, R. W. & Stauth, D. M. Rapid cloning of insect transposon insertion junctions using ‘universal’ PCR. Insect Mol. Biol. 6, 83–88 (1997)

    Article  CAS  Google Scholar 

  28. Quennedey, A. & Quennedey, B. Morphogenesis of the wing anlagen in the mealworm beetle Tenebrio molitor during the last larval instar. Tissue Cell 22, 721–740 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Bucher, M. Weber and M. Klingler for the pu11 enhancer-trap line, R. White for the FP6.86 antibody, DSHB for the 4D9 antibody and G. Pflugfelder for sharing information about omb degenerate primers. We thank K. Leonard for maintaining beetle stocks, T. Shippy for discussion and reading and S. Brown, R. Beeman, S. Haas and all the Manhattan beetle/insect laboratory members for discussion and comments. Y.T. thanks A. Sato and T. Yamaguchi for discussion. This work was supported by the international Human Frontier Science Program Organization (Long-term Fellow) and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Tomoyasu.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Detailed structures of elytra from wild-type, Cx RNAi (T1), and Utx RNAi (T3) adults. (PDF 107 kb)

Supplementary Figure 2

Transformed dorsal structures of Utx and ptl RNAi beetles. (PDF 85 kb)

Supplementary Figure 3

Relationship of Tc-iro stripes to the A/P boundary in the wing disc. (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomoyasu, Y., Wheeler, S. & Denell, R. Ultrabithorax is required for membranous wing identity in the beetle Tribolium castaneum. Nature 433, 643–647 (2005). https://doi.org/10.1038/nature03272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03272

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing