Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of a Möbius aromatic hydrocarbon

Abstract

The defining feature of aromatic hydrocarbon compounds is a cyclic molecular structure stabilized by the delocalization of π electrons that, according to the Hückel rule, need to total 4n + 2 (n = 1,2,…); cyclic compounds with 4n π electrons are antiaromatic and unstable. But in 1964, Heilbronner predicted1 on purely theoretical grounds that cyclic molecules with the topology of a Möbius band—a ring constructed by joining the ends of a rectangular strip after having given one end half a twist—should be aromatic if they contain 4n, rather than 4n + 2, π electrons. The prediction stimulated attempts to synthesize Möbius aromatic hydrocarbons, but twisted cyclic molecules are destabilized by large ring strains, with the twist also suppressing overlap of the p orbitals involved in electron delocalization and stabilization. In larger cyclic molecules, ring strain is less pronounced but the structures are very flexible and flip back to the less-strained Hückel topology2,3. Although transition-state species4, an unstable intermediate5 and a non-conjugated cyclic molecule6, all with a Möbius topology, have been documented, a stable aromatic Möbius system has not yet been realized. Here we report that combining a ‘normal’ aromatic structure (with p orbitals orthogonal to the ring plane) and a ‘belt-like’ aromatic structure (with p orbitals within the ring plane) yields a Möbius compound stabilized by its extended π system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy to stabilize the Möbius structure of annulenes.
Figure 2
Figure 3: X-ray structures and photographs of the crystals of the C2 Möbius and the Cs Hückel isomer.

Similar content being viewed by others

References

  1. Heilbronner, E. Hückel molecular orbitals of Möbius-type conformations of annulenes. Tetrahedr. Lett. 29, 1923–1928 (1964)

    Article  Google Scholar 

  2. Garrat, P. J. Aromaticity (Wiley and Sons, New York, 1986)

    Google Scholar 

  3. Oth, J. F. M. & Gilles, J.-M. Mobilité conformationelle et isomère de valence rapide réversible dans le [16]annulene. Tetrahedr. Lett. 60, 6259–6264 (1968)

    Article  Google Scholar 

  4. Zimmerman, H. E. On molecular orbital correlation diagrams, the occurrence of Möbius systems in cyclization reactions. J. Am. Chem. Soc. 88, 1564–1567 (1966)

    Article  CAS  Google Scholar 

  5. Mauksch, M., Gogonea, V., Jiao, H. & von Ragué Schleyer, P. Monocyclic (CH)9+—a Heilbronner-Möbius arene. Angew. Chem. Int. Edn Engl. 37, 2395–2398 (1998)

    Article  CAS  Google Scholar 

  6. Walba, D. M., Homan, T. C., Richards, R. M. & Haltiwanger, R. C. Topological stereochemistry 9. Synthesis and cutting “in half” of a molecular möbius strip. New J. Chem. 17, 661–681 (1993)

    CAS  Google Scholar 

  7. Dobrowolski, J. Cz. On the belt and Moebius isomers of the coronene molecule. J. Chem. Inf. Comput. Sci. 42, 490–499 (2002)

    Article  CAS  Google Scholar 

  8. Guillaume, M., Champagne, B., Perpète, E. A. & André, J.-M. Möbius strip versus linear and cyclic polyacenes: a Hückel and semiempirical investigation. Theor. Chem. Acc. 105, 431–436 (2001)

    Article  CAS  Google Scholar 

  9. Zoellner, R. W., Krebs, J. F. & Browne, D. M. Violently twisted and strained organic molecules. J. Chem. Inf. Comput. Sci. 34, 252–258 (1994)

    Article  CAS  Google Scholar 

  10. Kastrup, C. J., Oldfield, S. V. & Rzepa, H. S. An ab initio study of monodentate palladium ligand complexes with Möbius-aromatic chiral character. J. Chem. Soc. Dalton Trans. 2421–2422 (2002)

  11. Martin-Santamaria, S., Lavan, B. & Rzepa, H. S. Möbius aromatics arising from a C = C = C ring component. Chem. Commun. 1089–1090 (2000)

  12. Martin-Santamaria, S. & Rzepa, H. S. Twist localization in single, double and triple twisted Möbius cyclazenes. J. Chem. Soc. Perkin Trans 2, 1415–1417 (2000)

    Article  Google Scholar 

  13. Johnson, R. P. & Daoust, K. J. Electrocyclic ring opening modes of Dewar benzenes: ab initio predictions for Möbius benzene and trans-Dewar benzene as new C6H6 isomers. J. Am. Chem. Soc. 118, 7381–7385 (1996)

    Article  CAS  Google Scholar 

  14. Havenith, R. W. A., van Lenthe, J. H. & Jenneskens, L. W. Möbius Aromaticity in small [n] trans annulenes? Int. J. Quant. Chem. 85, 52–60 (2001)

    Article  CAS  Google Scholar 

  15. Castro, C., Isborn, C. M., Karney, W. L., Mauksch, M. & von Ragué Schleyer, P. Aromaticity with a twist: Möbius [4n]annulenes. Org. Lett. 4, 3431–3434 (2002)

    Article  CAS  Google Scholar 

  16. Kammermeier, S. & Herges, R. Photochemically induced metathesis reactions of tetradehydrodianthracene: synthesis and structure of bianthraquinodimethanes. Angew. Chem. 108, 470–472 (1996); Angew. Chem. Int. Edn Engl. 35,, 417–419 (1996)

    Article  Google Scholar 

  17. Kammermeier, S., Jones, P. G. & Herges, R. Ring-expanding metathesis of tetradehydrodianthracene—synthesis and structure of a tubelike, fully conjugated hydrocarbon. Angew. Chem. 108, 2834–2836 (1996); Angew. Chem. Int. Edn Engl. 35, 2669–2671 (1996)

    Article  Google Scholar 

  18. Kammermeier, S. & Herges, R. Beltlike aromatic hydrocarbons by metathesis reaction with tetradehydrodianthracene. Angew. Chem. 109, 2317–2319 (1997); Angew. Chem. Int. Edn Engl. 36, 2200–2202 (1997)

    Article  Google Scholar 

  19. Stewart, J. J. P. Optimization of parameters for semi-empirical methods I. Method. J. Comput. Chem. 10, 209–220 (1989)

    Article  CAS  Google Scholar 

  20. Frisch, M. J. et al. Gaussian 98, Revision A.11.4 (Gaussian, Inc., Pittsburgh, PA, 2002)

    Google Scholar 

  21. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  ADS  CAS  Google Scholar 

  22. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  ADS  CAS  Google Scholar 

  23. Avram, M. et al. Zwei stereoisomere Dimere des Cyclobutadiens. Chem. Ber. 97, 382–389 (1964)

    Article  CAS  Google Scholar 

  24. Krygowski, T. M. Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of π electron systems. J. Chem. Inf. Comput. Sci. 33, 70–78 (1993)

    Article  CAS  Google Scholar 

  25. Katritzky, A. R., Jug, K. & Oniciu, C. D. Quantitative measures of aromaticity for mono-, bi- and tricyclic penta- and hexaatomic heteroatomic ring systems and their interrelationships. Chem. Rev. 101, 1421–1449 (2001)

    Article  CAS  Google Scholar 

  26. Nendel, M. R. et al. Bond alternation and aromatic character in cyclic polyenes: assessment of theoretical methods for computing the structures and energies of bismethano[14]annulenes. J. Phys. Chem. A 102, 7191–7198 (1998)

    Article  CAS  Google Scholar 

  27. Wannere, C. S. et al. On the stability of large [4n]annulenes. Org. Lett. 5, 2983–2986 (2003)

    Article  CAS  Google Scholar 

  28. v. Schleyer, P. R. & Pühlhofer, F. Recommendations for the evaluation of aromatic stabilization energies. Org. Lett. 4, 865–868 (2003)

    Google Scholar 

Download references

Acknowledgements

We thank C. Näther for measuring the X-ray structures of the Hückel Cs and the Möbius C1 compounds, and C. Wolff for the interpretation of the NMR spectra. We also thank E. Heilbronner for providing additional information on ref. 1, and T. Bally for hints on how to improve the synthesis of syn-tricyclooctadiene. D.A. was supported by a scholarship from the federal state of Niedersachsen. Authors' contributions. R.H. together with D.A. conceived the experiment; D.A. carried it out; R.H. wrote the Letter; and A.S. and O.O. determined the X-ray structure of the Möbius C2 compound.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Herges.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2003_BFnature02224_MOESM1_ESM.doc

Supplementary Information: This file contains details about experimental procedure, UV spectra and X-ray data of Moebius c2 (DOC 650 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajami, D., Oeckler, O., Simon, A. et al. Synthesis of a Möbius aromatic hydrocarbon. Nature 426, 819–821 (2003). https://doi.org/10.1038/nature02224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02224

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing