Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A DNA damage checkpoint response in telomere-initiated senescence

Abstract

Most human somatic cells can undergo only a limited number of population doublings in vitro1. This exhaustion of proliferative potential, called senescence, can be triggered when telomeres—the ends of linear chromosomes—cannot fulfil their normal protective functions. Here we show that senescent human fibroblasts display molecular markers characteristic of cells bearing DNA double-strand breaks. These markers include nuclear foci of phosphorylated histone H2AX and their co-localization with DNA repair and DNA damage checkpoint factors such as 53BP1, MDC1 and NBS1. We also show that senescent cells contain activated forms of the DNA damage checkpoint kinases CHK1 and CHK2. Furthermore, by chromatin immunoprecipitation and whole-genome scanning approaches, we show that the chromosome ends of senescent cells directly contribute to the DNA damage response, and that uncapped telomeres directly associate with many, but not all, DNA damage response proteins. Finally, we show that inactivation of DNA damage checkpoint kinases in senescent cells can restore cell-cycle progression into S phase. Thus, we propose that telomere-initiated senescence reflects a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A DNA damage response in senescent cells.
Figure 2: Chromosome ends are directly associated with γ-H2AX in senescent HDFs.
Figure 3: A DNA damage response is generated upon telomere uncapping.
Figure 4: Checkpoint inactivation in senescent cells induces S-phase progression.

Similar content being viewed by others

References

  1. Hayflick, L. & Moorhead, P. S. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961)

    Article  CAS  PubMed  Google Scholar 

  2. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003)

    Article  CAS  Google Scholar 

  4. Nyberg, K. A., Michelson, R. J., Putnam, C. W. & Weinert, T. A. Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet. 36, 617–656 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. Lou, Z., Minter-Dykhouse, K., Wu, X. & Chen, J. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 421, 957–961 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Stewart, G. S., Wang, B., Bignell, C. R., Taylor, A. M. R. & Elledge, S. J. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421, 961–966 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Goldberg, M. et al. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421, 952–956 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Webley, K. et al. Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol. Cell. Biol. 20, 2803–2808 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Lange, T. Protection of mammalian telomeres. Oncogene 21, 532–540 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. Smogorzewska, A. & De Lange, T. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 21, 4338–4348 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martens, U. M. et al. Short telomeres on human chromosome 17p. Nature Genet. 18, 76–80 (1998)

    Article  CAS  PubMed  Google Scholar 

  13. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. Freire, R. et al. Human and mouse homologs of Schizosaccharomyces pombe rad1+ and Saccharomyces cerevisiae RAD17: linkage to checkpoint control and mammalian meiosis. Genes Dev. 12, 2560–2573 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lukas, C., Falck, J., Bartkova, J., Bartek, J. & Lukas, J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nature Cell Biol. 5, 255–260 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Cliby, W. A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17, 159–169 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heffernan, T. P. et al. An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol. Cell. Biol. 22, 8552–8561 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14, 278–288 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stoeber, K. et al. DNA replication licensing and human cell proliferation. J. Cell Sci. 114, 2027–2041 (2001)

    CAS  PubMed  Google Scholar 

  21. Schmitt, C. A. Senescence, apoptosis and therapy—cutting the lifelines of cancer. Nature Rev. Cancer 3, 286–295 (2003)

    Article  CAS  Google Scholar 

  22. Parrinello, S. et al. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nature Cell Biol. 5, 741–747 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. Wong, K. K. et al. Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nature Genet. 26, 85–88 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. Goytisolo, F. A. et al. Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J. Exp. Med. 192, 1625–1636 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Campisi, J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11, S27–S31 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. d'Adda di Fagagna, F. et al. Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr. Biol. 11, 1192–1196 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Fiegler, H. et al. DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosom. Cancer 36, 361–374 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, H., Watkins, J. L. & Piwnica-Worms, H. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc. Natl Acad. Sci. USA 99, 14795–14800 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sorensen, C. S. et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3, 247–258 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Abraham, C. Aquaviva, J. Bartek, R. Laskey, N. La Thangue, T. de Lange, S. Elledge, T. Halazonetis, M. Kastan and T. Kouzarides for sharing reagents; K. Woodfine for constructing the chromosome 22 array; M. Goldberg for help with immunofluorescence; B. Williams for generating pCHK2-KD; J. Bradbury and K. Dry for editorial help; and D. Baird, J. Bartek, M. Foiani, J. Pines and all the S.P.J. laboratory for suggestions. F.d'A.d.F. was supported by a Cancer Research UK grant, and P.M.R. is supported by a studentship from Cancer Research UK. T.v.Z. acknowledges support from Research into Ageing UK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabrizio d'Adda di Fagagna or Stephen P. Jackson.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1 (JPG 27 kb)

Supplementary Figure 2 (JPG 14 kb)

Supplementary Figure 3 (JPG 37 kb)

Supplementary Figure 4 (JPG 37 kb)

Supplementary Figure 5 (JPG 29 kb)

Supplementary Figure 6 (JPG 19 kb)

Supplementary Figure Legends (DOC 22 kb)

Supplementary Data Sheet: H2AX quiescent Cy3 vs Input Cy5 (XLS 1186 kb)

Supplementary Data Sheet: H2AX quiescent Cy5 vs Input Cy3 (XLS 1183 kb)

Supplementary Data Sheet: H2AX senescent Cy3 vs Input Cy5 (XLS 1184 kb)

Supplementary Data Sheet: H2AX senescent Cy5 vs Input Cy3 (XLS 1183 kb)

Supplementary Data Sheet: H2AX quiescent Cy3 vs Input Cy5, 22 tiling path array (XLS 718 kb)

Supplementary Data Sheet: H2AX quiescent Cy5 vs Input Cy3, 22 tiling path array (XLS 718 kb)

Supplementary Data Sheet: H2AX senescent Cy3 vs Input Cy5, 22 tiling path array (XLS 719 kb)

Supplementary Data Sheet: H2AX senescent Cy5 vs Input Cy3, 22 tiling path array (XLS 718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagagna, F., Reaper, P., Clay-Farrace, L. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003). https://doi.org/10.1038/nature02118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02118

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing