Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Hypothesis
  • Published:

Whole-mantle convection and the transition-zone water filter

Abstract

Because of their distinct chemical signatures, ocean-island and mid-ocean-ridge basalts are traditionally inferred to arise from separate, isolated reservoirs in the Earth's mantle. Such mantle reservoir models, however, typically satisfy geochemical constraints, but not geophysical observations. Here we propose an alternative hypothesis that, rather than being divided into isolated reservoirs, the mantle is filtered at the 410-km-deep discontinuity. We propose that, as the ascending ambient mantle (forced up by the downward flux of subducting slabs) rises out of the high-water-solubility transition zone (between the 660 km and 410 km discontinuities) into the low-solubility upper mantle above 410 km, it undergoes dehydration-induced partial melting that filters out incompatible elements. The filtered, dry and depleted solid phase continues to rise to become the source material for mid-ocean-ridge basalts. The wet, enriched melt residue may be denser than the surrounding solid and accordingly trapped at the 410 km boundary until slab entrainment returns it to the deeper mantle. The filter could be suppressed for both mantle plumes (which therefore generate wetter and more enriched ocean-island basalts) as well as the hotter Archaean mantle (thereby allowing for early production of enriched continental crust). We propose that the transition-zone water-filter model can explain many geochemical observations while avoiding the major pitfalls of invoking isolated mantle reservoirs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sketch of the transition-zone water-filter model.
Figure 2: Results of the theoretical model.
Figure 3: Schematic diagram of MORB and OIB isotopic variation according to the water-filter model.

Similar content being viewed by others

References

  1. Grand, S. Mantle shear structure beneath the americas and surrounding oceans. J. Geophys. Res. 99, 11591–11621 (1994)

    Article  ADS  Google Scholar 

  2. van der Hilst, R., Widiyantoro, S. & Engdahl, E. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Masters, G., Laske, G., Bolton, H. & Dziewonski, A. in Earth's Deep Interior (eds Karato, S., Forte, A., Liebermann, R., Masters, G. & Stixrude, L.) 63–87 (AGU, Washington DC, 2000)

    Google Scholar 

  4. van Keken, P., Hauri, E. & Ballentine, C. Mantle mixing: The generation, preservation, and destruction of chemical heterogeneity. Annu. Rev. Earth Planet. Sci. 30, 493–525 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Hofmann, A. & White, W. The role of subducted oceanic crust in mantle evolution. Carnegie Inst. Wash. Yearbk. 79, 477–483 (1980)

    Google Scholar 

  6. Coltice, N. & Ricard, Y. Geochemical observations and one layer mantle convection. Earth Planet. Sci. Lett. 174, 125–137 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Kellogg, L., Hager, B. & van der Hilst, R. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Dziewonski, A. & Anderson, D. Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  ADS  Google Scholar 

  9. Kennet, B. & Engdahl, E. Travel times for global earthquake location and phase identification. Geophys. J. Int. 105, 429–466 (1991)

    Article  ADS  Google Scholar 

  10. Davaille, A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Tackley, P. Strong heterogeneity caused by deep mantle layering. Geochem. Geophys. Geosyst. 3, 10.1029/2001GC000167 (2002)

  12. Schubert, G., Turcotte, D. & Olson, P. Mantle Convection in the Earth and Planets (Cambridge Univ. Press, Cambridge, UK, 2001)

    Book  Google Scholar 

  13. Ringwood, A. Phase transformations and their bearings on the constitution and dynamics of the mantle. Geochem. Cosmochem. Acta 55, 2083–2110 (1991)

    Article  ADS  CAS  Google Scholar 

  14. Williams, Q. & Hemley, R. Hydrogen in the deep earth. Annu. Rev. Earth. Planet. Sci. 29, 365–418 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Chakraborty, S. et al. Enhancement of cation diffusion rates across the 410-kilometer discontinuity in earth's mantle. Science 283, 362–365 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Xu, Y., Poe, B., Shankland, T. & Rubie, D. Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions. Science 280, 1415–1418 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Kohlstedt, D., Keppler, H. & Rubie, D. Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4 . Contrib. Mineral. Petrol. 123, 345–357 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Bolfan-Casanova, N., Keppler, H. & Rubie, D. Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24GPa: implications for the distribution of water in the earth's mantle. Earth Planet. Sci. Lett. 182, 209–221 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Murakami, M., Hirose, K., Yurimoto, H., Nakashima, S. & Takafuji, N. Water in earth's lower mantle. Science 295, 1885–1887 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Sobolev, A. & Chaussidon, M. H2O concentration in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet. Sci. Lett. 137, 45–55 (1996)

    Article  ADS  CAS  Google Scholar 

  21. Ringwood, A. Composition and Structure of the Earth's Mantle (McGraw-Hill, New York, 1975)

    Google Scholar 

  22. Ahrens, T. Water storage in the mantle. Nature 342, 122–123 (1989)

    Article  ADS  Google Scholar 

  23. Inoue, T. Effect of water on melting phase relations and melt composition in the system Mg2SiO4–MgSiO3–H2O up to 15GPa. Phys. Earth. Planet. Inter. 85, 237–263 (1994)

    Article  ADS  CAS  Google Scholar 

  24. Kawamoto, T., Hervig, R. & Holloway, J. Experimental evidence for a hydrous transition zone in the early earth's mantle. Earth Planet. Sci. Lett. 142, 587–592 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Young, T., Green, H., Hofmeister, A. & Walker, D. Infrared spectroscopic investigation of hydroxyl in β–(Mg, Fe)2SiO4 and coexisting olivine: implications for mantle evolution and dynamics. Phys. Chem. Minerals 19, 409–422 (1993)

    Article  ADS  CAS  Google Scholar 

  26. Hofmann, A. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–228 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Stolper, E., Walker, D., Hager, B. & Hays, J. Melt segregation from partially molten source regions: the importance of melt density and source region size. J. Geophys. Res. 86, 6261–6271 (1981)

    Article  ADS  CAS  Google Scholar 

  28. Ohtani, E. & Maeda, M. Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth Planet. Sci. Lett. 193, 69–75 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Ohtani, E., Nagata, Y., Suzuki, A. & Kato, T. Melting relations of peridotite and the density crossover in planetary mantles. Chem. Geol. 120, 207–221 (1995)

    Article  ADS  CAS  Google Scholar 

  30. Boehler, R. Melting temperature of the earth's mantle and core: Earth's thermal structure. Annu. Rev. Earth Planet. Sci. 24, 15–40 (1996)

    Article  ADS  CAS  Google Scholar 

  31. Pitzer, K. & Sterner, S. Equations of state valid continuously from zero to extreme pressures for H2O and CO2 . J. Chem. Phys. 101, 3111–3116 (1994)

    Article  ADS  CAS  Google Scholar 

  32. Richard, G., Monnerau, M. & Ingrin, J. Is the transition zone an empty water reservoir? Inferences from numerical model of mantle dynamics. Earth Planet. Sci. Lett. 205, 37–51 (2002)

    Article  ADS  CAS  Google Scholar 

  33. Zhao, Y.-H., Ginsberg, S. & Kohlstedt, D. Experimental investigation on water solubility in olivine single crystals with different Fe content. Acta Petrol. Sinica 17, 123–128 (2001)

    CAS  Google Scholar 

  34. Ohtani, E., Mizobata, H. & Yurimoto, H. Stability of dense hydrous magnesium silicate phases in the system Mg2SiO4–H2O and MgSiO3–H2O at pressures up to 27GPa. Phys. Chem. Minerals 27, 533–544 (2000)

    Article  ADS  CAS  Google Scholar 

  35. Richter, F. Models of Archean thermal regimes. Earth Planet. Sci. Lett. 73, 350–360 (1985)

    Article  ADS  CAS  Google Scholar 

  36. Taylor, S. & McLennan, S. The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, UK, 1985)

    Google Scholar 

  37. Carroll, M. & Stolper, E. Noble gas solubilities in silicate melts and glasses: new experimental results for argon and relationship between solubility and ionic porosity. Geochem. Cosmochem. Acta 57, 5039–5051 (1993)

    Article  ADS  CAS  Google Scholar 

  38. Chamorro, E. et al. Ar and K partitioning between clinopyroxene and silicate melt to 8GPa. Geochem. Cosmochem. Acta 66, 507–519 (2002)

    Article  ADS  CAS  Google Scholar 

  39. Allègre, C., Hofmann, A. & O'Nions, K. The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996)

    Article  ADS  Google Scholar 

  40. Hamano, Y. & Ozima, M. in Terrestrial Rare Gases (eds Alexander, E. & Ozima, M.) 155–171 (Japan Scientific Society Press, Tokyo, 1978)

    Book  Google Scholar 

  41. O'Nions, R. & Oxburgh, E. Heat and helium in the earth. Nature 306, 429–431 (1983)

    Article  ADS  CAS  Google Scholar 

  42. Albarède, F. Time-dependent models of U–Th–He and K–Ar evolution and the layering of mantle convection. Chem. Geol. 145, 413–429 (1998)

    Article  ADS  Google Scholar 

  43. Ballentine, C., Van Keken, P., Porcelli, D. & Hauri, E. Numerical models, geochemistry, and the Zero Paradox noble gas mantle. Phil. Trans. R. Soc. Lond. 360, 2611–2631 (2002)

    Article  ADS  CAS  Google Scholar 

  44. Revenaugh, J. & Sipkin, S. Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature 369, 474–476 (1994)

    Article  ADS  CAS  Google Scholar 

  45. Vinnik, L. & Farra, V. Subcratonic low-velocity layer and flood basalts. Geophys. Res. Lett. 29 doi: 10.1029/2001GL014064 (2002)

  46. Shaw, D. Trace element fractionation during anatexis. Geochem. Cosmochem. Acta 34, 237–243 (1970)

    Article  ADS  CAS  Google Scholar 

  47. Burnham, C. in The Evolution of the Igneous Rocks (ed. Yoder, J.) 439–482 (Princeton Univ. Press, Princeton, NJ, 1979)

    Google Scholar 

  48. Silver, L. & Stolper, E. A thermodynamic model for hydrous silicate melts. J. Geol. 93, 161–178 (1985)

    Article  ADS  CAS  Google Scholar 

  49. Ochs, F. & Lange, R. The partial molar volume, thermal expansivity, and compressibility of H2O in NaAlSi3O8 liquid. Contrib. Mineral. Petrol. 129, 155–165 (1997)

    Article  ADS  CAS  Google Scholar 

  50. Richet, P. et al. Water and the density of silicate glasses. Contrib. Mineral. Petrol. 138, 337–347 (2000)

    Article  ADS  CAS  Google Scholar 

  51. Fei, Y. in Mineral Physics and Crystallography A Handbook of Physical Constants (ed. Aherns, T.) AGU Ref. Shelf 2, 29–44 (AGU, Washington DC, 1995)

    Google Scholar 

  52. Suzuki, A., Ohtani, E. & Kato, T. Density and thermal expansion of a peridotite melt at high pressure. Phys. Earth Planet. Inter. 107, 53–61 (1998)

    Article  ADS  CAS  Google Scholar 

  53. Mackwell, S. & Kohlstedt, D. Diffusion of hydrogen in olivine: implications for water in the mantle. J. Geophys. Res. 95, 5079–5088 (1990)

    Article  ADS  Google Scholar 

  54. Hart, S., Hauri, E., Oschmann, L. & Whitehead, J. Mantle plumes and entrainment: isotopic evidence. Science 256, 517–520 (1992)

    Article  ADS  CAS  Google Scholar 

  55. Hauri, E., Wagner, T. & Grove, T. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melt. Chem. Geol. 117, 149–166 (1994)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Suzuki and E. Ohtani for access to data and unpublished documents, and G. Leahy for help producing Fig. 1. We also thank A. Hofmann for reviewing the manuscript and R. Batiza, T. Grove, S. Hart, E. Hauri, M. Hirschman, A. Rempel, Y. Ricard, F. Richter, G. Schubert, N. Sleep, D. Stevenson, K. Turekian, L. Vinnik, W. White, and D. Yuen for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bercovici.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bercovici, D., Karato, Si. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003). https://doi.org/10.1038/nature01918

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01918

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing