Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation

Abstract

Ocean–atmosphere interactions in the tropical Pacific region have a strong influence on global heat and water vapour transport and thus constitute an important component of the climate system1,2. Changes in sea surface temperatures and convection in the tropical Indo-Pacific region are thought to be responsible for the interannual to decadal climate variability observed in extra-tropical regions1,3, but the role of the tropics in climate changes on millennial and orbital timescales is less clear. Here we analyse oxygen isotopes and Mg/Ca ratios of foraminiferal shells from the Makassar strait in the heart of the Indo-Pacific warm pool, to obtain synchronous estimates of sea surface temperatures and ice volume. We find that sea surface temperatures increased by 3.5–4.0 °C during the last two glacial—interglacial transitions, synchronous with the global increase in atmospheric CO2 and Antarctic warming, but the temperature increase occurred 2,000–3,000 years before the Northern Hemisphere ice sheets melted. Our observations suggest that the tropical Pacific region plays an important role in driving glacial—interglacial cycles, possibly through a system similar to how El Niño/Southern Oscillation regulates the poleward flux of heat and water vapour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of sea surface temperature of the western Pacific and Indonesian region.
Figure 2: Globigerinoides ruber oxygen isotope (purple curve) and Mg/Ca SST (green curve) records for core MD9821-62 plotted versus time for MIS 1 and 2 (a) and MIS 5e and 6 (b).
Figure 3: Comparison of the MD9821-62 G. ruber δ18O (purple curve) and Mg/Ca SST (green curve) records with the Vostok CO2 (red curve) and deuterium isotope (blue curve) records22.

Similar content being viewed by others

References

  1. Cane, M. A role for the tropical Pacific. Science 282, 59–61 (1998)

    Article  CAS  Google Scholar 

  2. Pierrehumbert, R. Climate change and the tropical Pacific: The sleeping dragon wakes. Proc. Natl Acad. Sci. 97, 1355–1358 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Hoerling, M., Hurrell, J. & Xu, T. Tropical origins for recent North Atlantic climate change. Science 292, 90–92 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Broecker, W. Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13, 119–121 (1998)

    Article  ADS  Google Scholar 

  5. CLIMAP Project Members. Seasonal reconstructions of the Earth's surface at the last glacial maximum. Geol. Soc. Am. Map Chart Ser. MC-36, 1–18 (1981)

    Google Scholar 

  6. Lea, D., Pak, D. & Spero, H. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science 289, 1719–1924 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Guilderson, T., Fairbanks, R. & Rubenstone, J. Tropical Atlantic coral oxygen isotopes; glacial-interglacial sea surface temperatures and climate change. Mar. Geol. 172, 75–89 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Bacastow, R. The effect of temperature change of the warm surface waters of the oceans on atmospheric CO2 . Glob. Biogeochem. Cycles 10, 319–333 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Cane, M. & Clement, A. Mechanisms of Global Climate Change at Millennial Time Scales AGU Geophysical Monograph 112 (eds Clark, P., Webb, R. & Keigwin, L.) 373–383 (American Geophysical Union, Washington DC, 1999)

    Book  Google Scholar 

  10. Broecker, W. & Henderson, G. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography 13, 352–364 (1998)

    Article  ADS  Google Scholar 

  11. Shackleton, N. The 100,000-year ice age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289, 1897–1902 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Steig, E. et al. Synchronous climate changes in Antarctica and the North Atlantic. Science 282, 92–95 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Lea, D., Mashiotta, T. & Spero, H. Controls on magnesium and strontium uptake in planktonic foraminifer determined by live culture. Geochim. Cosmochim. Acta 63, 2369–2379 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Elderfield, H. & Ganssen, G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405, 442–445 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Hastings, D., Kienast, M., Steinke, S. & Whitko, A. A Comparison of three independent paleotemperature estimates from a high resolution record of deglacial SST records in the tropical South China Sea. Eos 82, PP12B-10 (2001)

    Google Scholar 

  16. Rosenthal, Y., Lohmann, G., Lohmann, K. & Sherrell, R. Incorporation and preservation of Mg in Globigerinoides sacculifer: Implications for reconstructing the temperature and 18O/16O of seawater. Paleoceanography 15, 135–145 (2000)

    Article  ADS  Google Scholar 

  17. Farrell, J. & Prell, W. Climatic change and CaCO3 preservation: An 800,00 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography 4, 447–466 (1989)

    Article  ADS  Google Scholar 

  18. Martinson, D. et al. Age dating and the orbital theory of the ice-ages: development of a high-resolution 0-300,000 year chronostratigraphy. Quat. Res. 27, 1–29 (1987)

    Article  CAS  Google Scholar 

  19. Schrag, D., Hampt, G. & Murray, D. Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272, 1930–1932 (1996)

    Article  ADS  CAS  Google Scholar 

  20. Epstein, S., Buchsbaum, R., Lowenstam, H. & Urey, H. Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 64, 1315–1325 (1953)

    Article  ADS  CAS  Google Scholar 

  21. Broecker, W. Mountain glaciers: Recorders of atmospheric water vapor content. Glob. Biogeochem. Cycles 11, 589–597 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Petit, J. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Hastenrath, S. On meridional heat transports in the world ocean. J. Phys. Ocean. 12, 922–927 (1982)

    Article  ADS  Google Scholar 

  24. White, W. B. & Peterson, R. An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature 380, 699–702 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Koutavas, A., Lybch-Stieglitz, J., Marchitto, T. M. & Sachs, J. El Niño-like pattern in ice age tropical Pacific sea surface temperature. Science 297, 226–230 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Stott, L., Poulsen, C., Lund, S. & Thunell, R. Super ENSO and global climate oscillations at millennial time scales. Science 297, 222–226 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Boyle, E., Labeyrie, L. & Duplessy, J-C. Calcitic foraminiferal data confirmed by cadmium in aragonitic Hoeglundina; application to the last glacial maximum in the northern Indian Ocean. Paleoceanography 10, 881–900 (1995)

    Article  ADS  Google Scholar 

  28. Dekens, P. S., Lea, D., Pak, D. & Spero, H. Core top calibration of Mg/Ca in tropical foraminifer: Refining paleotemperature estimation. Geochem. Geophys. Geosyst. 3, 10.1029/2001GC000200 (2002)

  29. Stuiver, M. et al. INTCAL98 Radiocarbon age calibration 24,000 - 0 cal BP. Radiocarbon 40, 1041–1083 (1998)

    Article  CAS  Google Scholar 

  30. Guilderson, T., Burckle, L., Hemming, S. & Peltier, W. Late Pleistocene sea level variations derived from the Argentine Shelf. Geochem. Geophys. Geosyst. 1, 10.1029/2000GC000098 (2000)

  31. Bard, E. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifer: Paleoceanographic implications. Paleoceanography 3, 635–645 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Tappa for technical assistance. This work was supported by the US National Science Foundation (R.T. and L.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Thunell.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visser, K., Thunell, R. & Stott, L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature 421, 152–155 (2003). https://doi.org/10.1038/nature01297

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01297

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing